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Abstract

We design an experiment to evaluate behavior in a dynamic spatial game repre-
senting the incentives faced by drivers for a ride-sharing service while waiting to be
matched with a rider. The design is unique in that it allows us to observe not only
participants’ choices, but also the considerations that went into those choices. The re-
sults of the experiment show that a large majority of player choices are consistent with
myopic best responding. A myopic best response maximizes a player’s flow payoff at
the time of the decision but is not necessarily optimal as it ignores strategic considera-
tions regarding the future choices of opponents. Given the observed prevalence of this
behavior and the challenges of equilibrium analysis, which we detail, we argue in fa-
vor of computational models of spatial competition built upon myopic agents. Myopic
behavior in our model results in quite efficient outcomes, suggesting that ride-sharing
companies may benefit from sharing with drivers the locations of other nearby drivers
to allow them to compete spatially.

1 Introduction

When Uber drivers are waiting for ride requests, they often sign out of the driver app and
into the passenger app. They do this because they want to see where nearby Uber drivers
are, and Uber shows nearby drivers only to passengers, not drivers.1 If in the passenger app
an Uber driver finds that she is surrounded by other drivers in near proximity, she knows
she may have to wait a while for a request or move to a different location—when passengers

∗We wish to thank Antonio Penta, Daniel Quint, Ken Hendricks, Justin Sydnor, Lones Smith, Marzena
Rostek, Marek Weretka, and Matthew Wiswall for their guidance and feedback. We are very grateful to
the University of Wisconsin’s BRITE Lab for their financial and logistical support. We have benefited from
feedback from seminar participants at the University of Wisconsin-Madison, Universidad de los Andes (San-
tiago), Université de Sherbrooke, Macalester College, Carleton College, and Open Source Macroeconomics
Laboratory at the University of Chicago as well as at the 2018 International Conference on Game Theory
and the 2018 INFORMS Winter Simulation Conference. R© denotes random author order. Code for included
simulations is available on Github.

1Lyft does essentially the same, but with driver and passenger modes combined in the same app.
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request rides on Uber, they are matched, roughly speaking, with the nearest available driver,2

and therefore a driver’s catchment region is small when she is surrounded by others.
An efficient spatial allocation of idle Uber drivers would minimize the expected wait-time

for passengers, which we assume proportional to the expected distance to nearest driver.
Supposing passengers are uniformly distributed over a unit disk and drivers travel as the
crow flies, Figure 1 shows three possible spatial allocations, each with six Uber drivers. The
points represent drivers, the black borders represent the catchment regions, and the shading
represents the distance from a point to its nearest driver. The allocation on the left yields
an expected distance of about 0.364, while the center and right allocations yield expected
distances of about 0.285 and 0.282, respectively. In this sense, the allocation on the right is
the most efficient—in fact, it is the optimal allocation of six drivers in this space.

Figure 1: Three different 6-driver spatial allocations of varying efficiency

Why do ride-sharing apps make it difficult for drivers to see the locations of their com-
petitors? Intuition might suggest that competitive markets would yield reasonably efficient
spatial allocations—if there were high expected demand in an area with no driver in close
proximity, an idle driver would reduce their expected idle time by moving to this area. This
intuition has been both supported and questioned in theoretical literature dating back to
Hotelling (1929).

We develop an experiment to examine behavior in a dynamic spatial game. In the exper-
iment, we provide players with calculator software to compute flow payoffs for any possible
spatial allocation. As players use the calculator to consider choices before making them, we
observe not only their choices in the actual game but also, in the calculator data, indications
of the allocations that they consider in making those choices. Looking at the choices, we
find that a large majority are consistent with myopic best responding. Of the choices that
are not, the calculator data suggests that most are attributable to error. Furthermore, the
number of times a player chooses a myopically optimal move has a statistically significant
positive effect on a player’s payment, suggesting that myopic optimization is a good rule of
thumb and that learning may reinforce it.

The spatial game in our experiment was designed to roughly match the ride-sharing mo-
tivation. It is a dynamic game with reversible decisions, no price competition, and fairly low
stakes. Assuming myopia in location choices with irreversible decisions, price competition,

2The actual matching algorithm is proprietary and more sophisticated. For instance, rides may be offered
to drivers who are completing another trip and about to become available in some proximity to the request.
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and higher stakes would be far stronger—businesses do extensive market research in location
choices. However, sophisticated market research will still yield decisions that are consistent
with myopic optimization unless reasoning on potential future entry, exit, or competitor
relocation induces choices that do not maximize myopic profits.

To evaluate mechanisms that yield spatial allocations and test related policies such as
exclusive territories and zoning, we seek a model of spatial competition that is both tractable
and rich enough to be predictive in applied settings. Static analyses in location theory reveal
many of the challenges in developing such a model: static spatial games may have multiple
Nash equilibria, none at all, or be intractable even in relatively simple environments—we
discuss this in Section 4.1.

Our experiment results support the modeling of spatial competition as a dynamic game
with agents that optimize myopically. With this assumption, a dynamic game can be modeled
as a sequence of static, individual optimizations, allowing for simulation and agent-based
models even in complex environments. In cases where agents following a myopic best response
dynamic converge to a fixed point, that fixed point is a Nash equilibrium of the corresponding
static game. Where there is no convergence, the dynamic path itself serves as a prediction
in that we can evaluate measures of inefficiency at different moments in time and compare
averages or dynamics. In the presence of complexity, agents make choices using heuristics
and rules of thumb. Agent-based models involve identifying these and building them into
a model to generate predictions through simulation and computation. Where theory is
traditionally deductive in that results are derived directly from assumptions, agent-based
modeling can be described as inductive in that one makes assumptions on agents and then
watches phenomena emerge through agent interaction, as we discuss in Section 4.2.

The rest of this paper is organized as follows: Section 2 presents our model of a dy-
namic spatial game. In Section 3, we present our experiment results on the prevalence of
myopic best-responding. In Section 4, we discuss the challenges of modeling spatial compe-
tition through static equilibrium analyses and propose agent-based models with behavioral
assumptions as an alternative. As an application, we run simple agent-based models both
in our experimental environment and on an actual transportation network to show that
ride-sharing companies may benefit from allowing each driver to see the locations of other
drivers. We conclude in Section 5.

2 Model

Environment

Let I = {1, . . . , I} denote the set of players. A graph G is given by the pair G = (N , A),
where N = {1, . . . , N} is a set of nodes and A ∈ [0,∞]N×N is a weighted adjacency matrix.
If there is an edge between nodes m and n, amn ∈ R≥0 denotes the distance or weight.
Otherwise, amn =∞. We embed G in R2 and assign each n ∈ N coordinates (xn, yn) ∈ R2.
G is an undirected graph so that anm = amn for all nodes m,n ∈ N . We also assume that G
is connected so that every two nodes in G have a path between them and that each node has
a self-loop, amm = 0, so that players may remain in their current positions across periods.
Node n’s set of neighbors Bn = {m ∈ N : anm <∞} includes all nodes with which n shares
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an edge.
In a dynamic game of spatial competition on a graph G, players sequentially choose their

locations on the graph. We consider games with T periods. A spatial allocation st is an
I-tuple (st,1, st,2, . . . , st,I) ∈

∏
i∈I N that records the locations of players on the nodes of

G in period t. Thus, st is a list of I nodes, where the ith element, st,i, is the location of
player i in period t. Let S =

∏
i∈I N be the set of all possible spatial allocations and define

st,−i ∈
∏

j∈I\{i}N as the spatial allocation of i’s opponents in period t. This notation allows
us to consider the movement of player i holding the positions of her opponents fixed. We
will refer to the 2-tuple (n, st,−i) as the spatial allocation in which player i is positioned at
node n and her opponents are positioned according to st,−i.

We define a multiplicity function, ψ : N × S → N≥1, that returns the cardinality of the
set of players who are closest to a particular node: ψ(n, st) = | arg mini∈I{d(n, st,i)}|, where
the distance function d(·) finds the length of the shortest path between two given nodes. For
example, ψ(n, st) = 2 implies that the two closest players are equidistant from node n in
the spatial allocation st. We also allow colocation—where multiple players are located at n,
each is a distance of zero from n, and the multiplicity function therefore gives the number
of players at n.

In each period t, we use a Voronoi diagram, Vor(st), to calculate each player’s market
share. A Voronoi diagram on a space and a set of points divides a space into cells, with
each cell representing the region that is closer to a particular point than to any other point.
Vor(st) partitions N into Voronoi cells Vi(st) = {n ∈ N | d(n, st,i) ≤ d(n, st,j),∀j 6= i} for
each player i ∈ I. At period t in the game, the market share of player i is the number of
cells to which she is the closest player, including evenly divided shares of cells to which she
and other players are equidistant:

πi(st) =
∑

n∈Vi(st)

1

ψ(n, st)
.

Equilibrium

A spatial allocation st is a global Nash equilibrium of a static location game if for all i ∈ I
and for all n ∈ N , πi(st) ≥ πi(n, st,−i). It is a local Nash equilibrium of a static location
game if for all i ∈ I and for all b ∈ Bst,i , πi(st) ≥ πi(b, st,−i). A global Nash equilibrium
requires that there is no profitable deviation for any player to any other node, whereas a
local equilibrium precludes only profitable deviations for any player to any adjacent node.
Obviously the set of local equilibria contains the set of global equilibria.

Efficiency

To measure the spatial inefficiency of an allocation for the purposes of the ride-sharing
motivation, we first calculate the average distance from each node to its nearest driver in
the spatial allocation, st:

d̄(st) =
1

N

(∑
n∈N

min
i∈I
{d(n, st,i)}

)
. (1)
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Define an optimal spatial allocation s∗t as one which minimizes (1):

s∗ ∈ arg min
st∈S

d̄(st) .
3 (2)

Then, define the spatial inefficiency of a spatial allocation st as the percentage difference
between the average distance of an allocation and that of an optimized allocation:

ξ(st) =
d̄(st)− d̄(s∗)

d̄(s∗)
. (3)

3 Experiment

In this section, we present results from an experiment designed to test the validity of the
behavioral assumption that agents myopically best respond (MBR) in the context of a dy-
namic spatial game. If an agent maximizes her instantaneous flow playoffs at the moment of
her decision, ignoring potential future opponent movements, we say that her choices satisfy
the MBR assumption.

Insofar as there are costs associated with complex strategic reasoning, myopia could be
rational. Abstracting from these costs, we know that behaving in accordance with the MBR
assumption is likely to be suboptimal. Our initial hypothesis was that agents would choose
to myopically best respond—it is a reasonably good strategy and does not require complex
strategic reasoning. Indeed, we find evidence of this.

Our experiment involves participants playing a two-dimensional, discrete-time, dynamic
spatial game. Previewing our results, we observe 2178 decisions and find that only 307 of
them are suggestive of higher-order reasoning (SHO) that would violate the MBR behavioral
assumption. Further, regression analysis shows that players that make more SHO choices
earn no more money than those who make fewer, while players who behave most in accor-
dance with the behavioral assumption do earn more money, suggesting that repetition and
learning might work in favor of the assumption’s validity.

3.1 Related literature

There are two experimental literatures that are relevant to our work. The first seeks to
offer an experimental answer to the question of whether competition yields spatially effi-
cient outcomes. Brown-Kruse et al. (1993) tests Hotelling’s linear-city model in a repeated
game with two firms and examines the role of communication between players. Without
communication, the two firms locate near the center of the market. With communication,
they locate one-fourth and three-fourths of the way along the linear market and maximize
joint profits. Kruse and Schenk (2000) extends Brown-Kruse et al. (1993) to consider non-
uniform customer distributions. Players generally chose symmetric strategies with uniform,
unimodal, and bimodal distributions, but, even with communication, they struggled to reach
the profit-maximizing allocation with non-uniform customer distributions. In order to study
the role of complexity in location games, Kruse and Schenk (2000) also considers Hotelling’s

3Auerbach and Dix (2018) explores how to compute s∗t in continuous spaces.
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linear city model with a simplified decision environment where they only allowed players to
choose between two locations: the center or one edge of the market. Players in the simplified
decision environment reached the profit-maximizing allocation more often than those with
the full range of potential locations, but allowing communication between players, even in
the more complex environment, led more often to the profit-maximizing allocation. Collins
and Sherstyuk (2000) considers a similar model to that in Brown-Kruse et al. (1993) but
with three firms and finds that players randomize locations and avoid both the center and
edges of the market, highlighting the role of risk aversion as agents choose low-risk locations
instead of the risk-neutral equilibrium predictions.

The second relevant literature is that on depth of reasoning. The MBR assumption is
similar to assuming that all agents are level-1 in that they fail to reason to any extent
about future opponent play. Depth of reasoning is typically studied within a Keynesian
beauty contest, first described in Keynes (1936). Nagel (1995) proposed the level-k model
of depth of reasoning and experimentally identified heterogeneity in this depth among the
experiment’s participants. Halpern and Pass (2015) develop a framework for reasoning about
strategic agents performing possibly costly computation. Alaoui and Penta (2016, 2017a,b)
offer a model of, as well as experimental support for, endogenous agent depth of reasoning
motivated by an axiomatized cost-benefit analysis. Level-k models are typically applied to
static games, though Rampal (2017) is a recent extension to dynamic games. While assuming
level-1 behavior would be a very strong assumption in a Keynesian beauty contest, our spatial
game on the Euclidean plane is far more complex due to the underlying geometry.

3.2 Design

We use a grid in our experimental environment. An N × N grid is a graph G = (N , A)
whose set of nodes are numbered 1 through N2. We embed G in R2 and assign each node
coordinates (i, j) with 1 ≤ i ≤ N and 1 ≤ j ≤ N . Then, there is an edge between two nodes
m and n with coordinates (i, j) and (k, l), respectively, if and only if |i−k|+ |j− l| ≤ 1. For
A, this means that am,n = 1 if and only if the previous condition holds, otherwise am,n =∞.
For all n ∈ N , an,n = 0.

In the experiment, five participants (players, henceforth) played a location game on a
21 × 21 grid. Players were given the opportunity, one by one, to move one square in any
cardinal direction. Turn order was random. Colocation was not allowed. We used the
same initial allocation of players, shown in Figure 2, for each session. Players are labeled by
number, 1 through 5. There are also eight computer players, each labeled with C, who do not
move and are positioned along the perimeter of the grid. We include these static computer
players because we want to abstract from issues resulting from the presence of boundaries.
Having the static computer players makes the game played by the actual players theoretically
similar to that played in a particular region of the unbounded Euclidean plane.

Each player has a color assigned to them. The player’s current location is represented
by a single cell in the grid with a dark shade of that color and the player’s number. The
player’s Voronoi region, calculated with the `1 norm (Manhattan distance), is represented
by an area of the grid in a lighter shade of the player’s color. Black cells are equidistant
from two or more players, at least one of which is not a computer. Grey cells are closer to a
computer player than any non-computer player.
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Figure 2: Initial allocation of players on grid

We conducted the experiment with two pieces of software that we developed. Our main
console software, shown in Figure 3, shows the players’ locations in the current iteration,
the player whose turn it is to move, and a grid with the players’ Voronoi regions. The grid
also highlights up to five move options, including the four cardinal directions and an option
to remain at the current location. In the experiment, the main console was projected for all
players to view throughout the experimental session.

Our second piece of software, shown in Figure 4, is calculator software that each player
used on her own lab computer throughout the experiment. The calculator allows players to
enter in an allocation of players, calculate the area of the players’ Voronoi regions for that
allocation, and see the grid of the players’ Voronoi regions. We provided the calculator for
two reasons. First, while it is simple arithmetic to work out which Voronoi region a given
square belongs to for a given allocation, it is very time-consuming to calculate the area of a
Voronoi region by hand. We wanted to alleviate that burden. Second, because players were
using the calculator to consider their choices during each turn, and between their turns in
many cases, we have data on not only the choices they make in the actual game but also all
of the allocations they considered in making their choices.

The game is played as follows. In each iteration, the player number whose turn it is in
that iteration is announced. This player has up to two minutes to decide where to move.4

4The time limit was only to prevent a player from deliberately stalling the experiment indefinitely, not to
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Figure 3: Main console software

Figure 4: Calculator software
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The player then communicates her decision to the experiment leader and the experiment
leader updates the main console accordingly. This process repeats for the duration of the
experiment session.

In each turn of the game, a player chooses to move to a square within one unit of her
current location. If there are no opponents within one unit of the current player’s position
and she is not on a boundary, she has five squares to choose from. For example, in Figure 3,
we see the squares Player 3 can choose to move to are highlighted in a dark shade of purple.
Positioning the current player in one of these squares within one unit of her current location
and keeping the opponents in place creates up to five potential allocations of players for the
next iteration. We define each of these potential allocations as a move option. We define
a move option’s flow payment as the area of the current player’s Voronoi region after the
move is made. In order to classify all move options, we rank the move options by their flow
payments: the FP1 move is the move option with the highest flow payment, the FP2 move
is that with the second-highest flow payment, etc. An MBR agent would always choose the
FP1 move.

We ran the experiment at the Behavioral Research Insights Through Experiments (BRITE)
Lab at the University of Wisconsin-Madison in June, 2017. Players were recruited from a
pool of students maintained by the BRITE Lab. We conducted 18 experimental sessions,
each with 5 players, for a total of 90 players. Players were shown an instructional video at
the beginning of each experimental session to explain how the game is played and how their
payments would be calculated. A transcript of the instructions and a link to the video are
included in Appendix A.

Players’ payments were proportional to the average area of their Voronoi regions over
all iterations in the experimental session, where an iteration is defined by the allocation
at a given time and a new iteration is entered upon every selected move. The number of
iterations per session varied based on speed of play. Turn order was determined randomly.
Experimental sessions were scheduled to last 90 minutes, including time for the instructional
video. The average time spent playing the game was 68 minutes, and the average number of
iterations per experimental session was 121. The mean player payment was $20.5

3.3 Results

There were a total of 2178 main console moves across the 18 sessions. Table 1 shows the
distribution of flow payment move rankings for all moves as well as for those made after the
first ten minutes of each session. The percentage of FP1 moves increases with the exclusion

put any time pressure on play. The limit was reached only a handful of times. In each of those occasions, the
experiment leader then asked the player where she wanted to move and the player responded immediately.

5Each iteration is scored by calculating the size of each player’s Voronoi region in the Voronoi diagram
of the players over the grid. Let mi,t denote player i’s score for iteration t. It is calculated as the number
of squares in the grid that are closest to player i in iteration t, i.e., the size of player i’s Voronoi region. A
square that is equidistant from multiple players is divided evenly amongst those players for scoring purposes,
as described in Section 2. Player i’s current session score in iteration τ is Mi,τ = 1

τ ·
1

212 ·
∑τ
t=1mi,t. The

session score calculates the average percentage of the 21×21 grid controlled by player i over the τ iterations.
After the last iteration (t = T ), player i was paid $180·Mi,T . While $180 was the technical session prize pool,
the actual amount paid out to players was close to $100 given that the computer agents win a significant
portion of the pool.

9



of the first ten minutes, suggesting that there was some noise in the beginning of each session
as players learned how to play the game and how to use the calculator.

Table 1: Distribution of move FP rankings

All moves After 10
FP ranking Freq. % Freq. %

1 1315 60 1103 63
2 439 20 339 20
3 229 11 174 10
4 126 6 74 4
5 69 3 50 3

Result 1. Players chose the FP1 move 60% of the time.

This does not imply that a majority of players behaved in accordance with the MBR
behavioral assumption. Nor does it suggest that a majority of moves were made by players
behaving in accordance with the MBR assumption. Players selecting a FP1 move may be
engaging in sophisticated consideration of anticipated future movements that happens to
motivate them to pick the same choice as an MBR player. Alternatively, an agent might just
select a move randomly and happen to select the FP1 move. Similarly for the moves selected
that were not FP1, the analysis above does not suggest the reasoning that motivated these
choices.6 However, we use data from players’ calculators to learn about reasoning processes.

If players were engaging in higher-order reasoning on their opponents’ subsequent behav-
ior, we would expect them to run calculations that considered potential subsequent move-
ments from opponents. We saw this only rarely. Players tended to keep their opponents in
place relative to the current allocation of players in the main console and tested allocations
with only their own locations adjusted. In fact, our second result of note is that a majority
of calculations made were on move options. Table 2 summarizes the positions of opponents
in calculations.

Result 2. In 82% of calculations, all opponents were positioned as they were in the current
iteration. 76% of calculations were of move options.

We can also consider whether players made forward-looking calculations with respect to
their own locations. As players could only move one square per turn, a calculation with the
player moved more than one square tested a non-feasible move. A player positioning herself
more than one unit away from her position in the current iteration could suggest some level of
higher-order reasoning. Table 3 shows the distances that the player who made the calculation
was from her current position in the iteration. Very few forward-looking calculations were
made. Instead, a majority of the calculations were either updating to the current iteration
or testing a move option of the current iteration. Again, we see that opponents were often
in place relative to the current iteration.

6In some sense the modeler may not care how agents arrive at FP1 moves—if players are systematically
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Table 2: Positioning of opponents in calculations

Freq. %
Total 24 765

Opponents in place 20 341 82
Move option 18 869 76

Table 3: Distribution of player distances from their iteration position in calculations

Distance Freq. % Of which opponents in place %

0 12 046 49 9546 79
1 10 733 43 9323 87
2 1205 5 957 79
3 360 2 253 70
≥4 421 2 262 62

Result 3. In 92% of calculations, the calculating player was within one square of her position
at the the time of calculation.7

We now turn to an analysis of non-FP1 moves to address the question of how many
of them are suggestive of higher-order reasoning on opponent responses. Here, we define
the relevant calculation interval for a move to be the timespan from the last change in
the allocation up until the move.8 The set of relevant calculations, then, is the set of all
calculations made during a move’s relevant interval. To partition the set of non-FP1 moves,
we first determine whether the FP1 move was calculated during the relevant interval. In a
majority of non-FP1 moves, the FP1 move was not calculated, suggesting to us that these
choices are likely attributable to a failure to consider or calculate the FP1 move rather than
higher-order reasoning.

To further refine this partitioning, we then determine whether the move that was chosen
was actually calculated. For moves where the FP1 move was not calculated but the move
chosen was calculated, we can ask whether the player chose the highest-scoring calculated
move (HSCM) of all moves calculated in the relevant interval. Although the FP1 move was
not chosen, the moves in this subset suggest MBR-like behavior. See Table 4 for the full
partitioning of non-FP1 moves.9

making these choices, they are predictable regardless of how they reached them. On the other hand, such
a coincidence of reasoning and predictable choice is less transportable to other models than a behavioral
assumption that explains the coincidence.

7The frequency of zero-distance calculations is high partially because players’ calculators do not automat-
ically update to the iteration positions after a move is made—many of these calculations should be attributed
to players updating their calculators to a new iteration.

8This is to account for instances where players before the player in question choose to remain in place.
9We also saw a slight bias for non-FP1 moves towards the center—of the 863 non-FP1 moves, 362 were

towards the center, 249 were towards the perimeter, and 252 remained in place.
9Although we made it clear in each session that the calculators did not automatically update for each

new iteration (by design), we saw quite a few instances where players were doing MBR-like calculations but
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Table 4: Partitioning the 863 non-FP1 moves

FP1 not calculated FP1 calculated
535 328

Choice not calculated 325 21
No calculations (205)

Some calculations (120)

Choice calculated 210 307
Chose HSCM (126)

Did not choose HSCM (84)

Within the set of non-FP1 moves, we define a move to be suggestive of higher-order
reasoning (SHO) if the player calculated both the FP1 move and the move she ultimately
chose, but did not choose the FP1 move. For these 307 moves (out of 2178 total moves),
the player was accurately using the calculator and deviating from the FP1 move.10 Table
5 shows how many players, and in what quantities, were responsible for the SHO moves.
Approximately 24% of SHO moves were made by less than 7% percent of players.

Table 5: Number of SHO moves by player

# SHO Moves # Players % Players % Total SHO

0 19 21 0
1 15 17 5
2 11 12 7
3 9 10 9
4 11 12 14
5 6 7 10
6 4 4 8
7 4 4 9
8 3 3 8
9 2 2 6

≥10 6 7 24

Another thought is that players may be following the MBR assumption roughly but then
deciding by intuition when flow payments of two or more moves are very close. To get at
this, we look at the flow payment differences between the FP1 move and that of the chosen
moves. The average difference for non-FP1, non-SHO moves, between the move selected and
the FP1 move, was 1.74 grid squares. The average score difference for non-FP1, SHO moves
was only .82 grid squares, suggesting that players are relying on intuition and higher-order

with the opponents in the position of a previous (outdated) iteration. This accounts for many of the 120
cases where some calculations were made but neither the choice nor the FP1 move was calculated.

10It is also possible that they simply forgot the results of some of their calculations. They were not given
pen and paper, or any other means to record their calculations.
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reasoning mostly when the flow payments are close.11 Table 6 compares the score differences.

Result 4. Differences in flow payments between SHO moves and their FP1 alternatives were
significantly smaller than those between non-SHO, non-FP1 moves and their FP1 alterna-
tives.

Table 6: Score differences for non-FP1 moves

SHO % non-SHO %

Score Diff > 1 22 49
Score Diff ≤ 1 78 51

Score Diff < .5 33 14
Score Diff < .25 17 6

Finally, we can examine the determinants of success in the experiment through regression.
Table 7 shows the impact of several behaviors on a player’s session score. Since there is
expected variation in the session scores between player numbers because of the unequal
areas in the initial allocation, we calculate the mean session score for each player number
and determine the difference from this mean for each player. We use this as our measure
of player performance and the dependent variable in the regression analysis. Moreover,
because turn order was randomly determined and sessions were limited by total amount of
time playing the game, rather than total number of iterations, players had different numbers
of turns. We control for this in the regressions.

In the first column, we find that players who chose more FP1 moves achieved higher
session scores than those choosing fewer. In the second and third columns, we find no
statistically significant relationship between the number of SHO moves chosen and a player’s
session score. The fourth column shows that players who made more calculations earned
higher session scores. But when we include both the number of calculations made, and the
number of FP1 moves, it is the latter that maintains its significance. In the third and seventh
columns we run similar regressions but restrict our sample to the moves of players who make
at least three SHO moves.

Result 5. The number of SHO moves a player chose had no statistically significant impact
on her performance. The number of FP1 moves had a significant positive impact.

Perhaps undergraduate students participating in low-stakes experiments behave in ac-
cordance with a simplistic behavioral assumption, willfully ignoring anticipated opponent
responses to their choices. Perhaps this could also apply to Uber drivers given the rela-
tively low stakes. But it may seem less intuitive that firms would behave so simplistically in
higher-stakes location choices. The regression results push against this. The more players
behaved in this simplistic MBR manner, the better they did. If players are to learn from
their performance, it would lead them to select FP1 moves more often, not less. Of course,

11SHO moves with very small flow payment differences could also potentially be attributed to errors in
noticing the small differences.
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Table 7: Difference from mean score (in thousandths, by player number)

(1) (2) (3) (4) (5) (6) (7)
All All #SHO≥ 3 All All All #SHO≥ 3

# Turns −0.171 0.0218 −0.0375 −0.0288 −0.179 −0.00974 −0.0730
(0.120) (0.0836) (0.132) (0.0873) (0.117) (0.0779) (0.130)

# FP1 0.441∗ 0.391∗

(0.174) (0.169)

# SHO −0.221 −0.392 −0.375 −0.381
(0.279) (0.495) (0.272) (0.446)

# Calcs. 0.0137∗ 0.0112 0.0162∗ 0.0147
(0.00628) (0.00624) (0.00708) (0.00947)

N 90 90 45 90 90 90 45
adj. R2 0.062 -0.013 -0.023 0.034 0.088 0.051 0.021

Robust standard errors in parentheses. ∗ p < 0.05

MBR seems to do well against approximately MBR opponents—we have not shown that it
does well against opponents doing more sophisticated reasoning.

We think that the MBR assumption may be realistic in an applied setting. For Uber
drivers, given the reversibility of their decisions and the low stakes, sophisticated reasoning
on the movements of other drivers is unlikely to be worthwhile. It is a stronger assumption in
games with irreversible decisions and large stakes. Businesses do extensive market research
before deciding where to place new facilities, but this due diligence may still be analogous to
MBR agents considering move options in our experiment unless businesses explicitly reason
on potential future entry, exit, or firm relocation and this reasoning alters their choices.

We cannot argue affirmatively that players myopically best respond, but we do fail to find
significant evidence that they violate the assumption. And our regression results suggest that
learning may push players toward, not away from, MBR behavior. Of course, this negative
result is good news for those seeking to do agent-based modeling with an MBR assumption.
The irony is that the underlying complexity of spatial competition that makes equilibrium
analysis difficult may also make players behave quite predictably, thereby facilitating agent-
based modeling. Given the results of our experiment, we think it best to model agents in a
spatial agent-based model as noisy MBR agents.12 These agents would usually choose FP1
moves, but would randomly choose non-FP1 moves, doing so more often when non-FP1 moves
are closer in flow payments and in these cases usually selecting moves with relatively high flow
payments. This extends easily to agent-based models with spatial and price competition as
we describe in Section 4.2. Our finding that agent behavior is quite predictable in a complex
dynamic spatial game may also be relevant to other complex dynamic games.

12Models in which all agents myopically best respond are also useful both as a benchmark and as a way
of computing Nash equilibria in analogous static games.
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4 Discussion

4.1 Challenges of static models

Spatial games are typically modeled as static games despite the fact that mechanisms gen-
erating empirical spatial allocations are likely continuous-time dynamic games.13 Analyses
vary in the number of firms, the space, and the customer distribution.14 Each firm’s profit
is proportional to the mass of customers that is closer to the firm than any other. If two
or more firms are colocated, they split equally their joint mass of customers. Each firm
simultaneously chooses its location, si, to maximize its profits. A Nash equilibrium spatial
allocation, s, is such that no firm could increase its profits by unilaterally deviating to another
location. In discussing equilibrium analysis on static spatial games, we illustrate three key
impediments to using these models for applied prediction: i) multiplicity, ii) non-existence,
and iii) intractability.15

Analysis of spatial competition dates back to Hotelling (1929).16 Hotelling’s canonical
main-street, or linear-city, model has two firms competing on location. His key result, which
came to be known both as Hotelling’s Law and the principle of minimum differentiation, is
that firms may be incentivized to make their products as similar as possible. In a spatial
model, this manifests as colocation. Spatial competition also relates to monopolistic com-
petition, à la Chamberlin (1933), except that the product differentiation comes from the
location of the sellers. Many real markets involve sellers in different locations selling dif-
ferentiated products at different prices—high dimensionality makes it very difficult to make
theoretical predictions in such a rich model.

Model 1 of Eaton and Lipsey (1975) has a bounded line as its space and uniform customer
density—it is a fairly straight-forward extension of Hotelling (1929), without prices, to cover

13Sequential games with irreversible decisions are commonly modeled as static games. In our setting, there
may be uncertainty about timing in the game, and beliefs on that timing. See Penta and Zuazo-Garin (2017)
for analysis on rationalizability in this context.

14For reviews of this literature, see Graitson (1982) and Gabszewicz and Thisse (1992).
15The challenges of theoretical analysis also motivate the Structure-Conduct-Performance (SCP) paradigm

developed in Mason (1939, 1948), which looks for empirical evidence of relationships between industry
structure and outcomes. See Bain (1951, 1956) for across-industry analyses and Stigler et al. (1983) for a
critique that favored price theory models. In some sense, Von Neumann and Morgenstern (1944) developed
game theory as an alternative to the SCP paradigm.

16Hotelling (1929) was a response to Bertrand (1883) and extensions in Edgeworth (1897). In turn,
Bertrand (1883) was a paradox proposed in critique of Cournot (1838) and Walras (1883). Cournot’s duopoly
with firms choosing quantities yields lower quantities and higher prices than the social optimum. Bertrand’s
model is similar but with firms choosing prices, not quantities. Intuitively this should not matter given that
prices determine quantities and vice versa, yet Bertrand’s model predicts no deadweight loss in the duopoly,
thus the paradox. Hotelling’s critique of Bertrand (1883) focused on what he viewed as the unrealistic
discontinuity in the Bertrand model where one seller goes from serving no customers to serving all of them
as she moves her price from minimally above her rival’s to below: “. . . a discontinuity, like a vacuum, is
abhorred by nature” (Hotelling, 1929, p.44). Ironically, Hotelling’s analysis, which had firms competing
on both price and location, was incorrect because he failed to take account of discontinuities in his firms’
best response functions. This error was mentioned in Shubik (1959) and Vickrey (1964) but not corrected
until d’Aspremont et al. (1979), which showed that no equilibrium existed in Hotelling’s original model.
While Hotelling’s predictions were incorrect for his price-location model, they are correct for the same model
without prices, and most now remember Hotelling’s contribution as one of pure spatial competition.
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n ≥ 2 firms. For n = 3, there is no equilibrium. For n = 4 and n = 5, there exists a
unique equilibrium with two firms colocated near each boundary, and one additional firm in
the middle in the n = 5 case. For n ≥ 6, there is multiplicity—while the two firms nearest
each boundary must be colocated, each interior firm may be colocated or uniquely located.
Flexibility in the equilibrium positioning of the interior, individually-located firms means
that there are infinitely many equilibria for any n ≥ 6. For exposition, assume here that
n is even. Again we take spatial efficiency as the inverse of the expected distance from a
customer to her nearest firm. Then, in the optimal allocation, which is not an equilibrium,
the n firms evenly divide the line. The most efficient equilibrium has all but the boundary
firms uniquely located. The least efficient has all firms colocated in pairs. We show the three
for n = 10 in Figure 7.17

Figure 7: Equilibrium spatial allocations with ten firms

As we abstract from the boundary behavior by increasing n, the expected distance in
the best equilibrium allocation converges to that of the optimal allocation, while that of
the worst equilibrium converges to twice that of the optimal allocation. The multiplicity
of equilibria means that equilibrium analysis gives no conclusive answer to the question of
spatial efficiency even in this simple setting of uniform customer density of a line.18

Model 3 in Eaton and Lipsey (1975) departs from the assumption of a uniform customer
density and finds a non-trivial necessary condition for the existence of equilibrium: the num-
ber of firms cannot exceed twice the number of modes of the (assumed continuous) customer
density function. In particular, this means that for any n ≥ 3, there exists no equilibrium if
customer density is single-peaked—imagine a linear city with population density highest at
the center and tapering toward the boundary in each direction. Where multiplicity impeded
prediction with uniform customer density functions, here non-existence is the challenge.

Spatial competition in applied settings usually takes place in two-dimensional spaces.
Lösch (1954, p.94-97) considers the unbounded Euclidean plane with a uniform customer
distribution and suggests the optimality and stability of an offset grid configuration of firms,

17We thank Liyang Liu for his assistance in extending the Eaton and Lipsey (1975) characterization to
arbitrary n.

18One might favor the worst equilibrium as a prediction given that it is the only strict equilibrium.
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the Voronoi diagram19 of which is a hexagonal covering as shown in Figure 8a—both the
letters and points represent firms and the hexagons are Voronoi cells.20

Lösch’s equilibrium is supported numerically in Eaton and Lipsey (1975) and proven
analytically in Okabe and Aoyagi (1991).21 Its optimality is proven in Bollobas and Stern
(1972). In this setting, equilibrium and optimality coincide.

(a) Hexagonal covering (b) A’s optimal position conditional on C

Figure 8: Löschian equilibrium hexagonal covering and individual incentives

But Eaton and Lipsey (1972, 1976, 1978) find many flaws in the Löschian model and
argue that competition need not yield that hexagonal covering. Further, even if one were to
accept the prediction of the hexagonal covering in this setting, there is no evidence that this
prediction generalizes beyond an unbounded Euclidean space with uniform customer density.
Boundaries in the linear model implied inefficient colocation near them in equilibrium, while
departing from uniform customer density raised questions of existence. The former issue
extends fairly intuitively to two dimensions—a uniquely-located firm near a boundary is
incentivized to move away from the boundary as it gains customers towards the interior
without losing its essentially captive customers between it and the boundary.22 As for the
latter, little is known.

19A Voronoi diagram on a space and a set of points divides a space into cells, with each cell representing
the region that is closer to a particular point than to any other point. It is a formalization of what we called
catchment regions in describing Figure 1.

20Lösch (1954) attempts game-theoretic equilibrium analysis before the tools were well understood—his
equilibrium conditions are a mix of behavioral postulates and conditions that purportedly follow from them.
One of the equilibrium conditions, incorporating prices, was a zero-profit condition justified by free entry.
But Eaton and Lipsey (1978) shows that the neoclassical result of free entry yielding zero profits does not
survive an extension to space with scale effects, calling into question many spatial analyses that used that
assumption—Eaton and Lipsey (1978, p.455) offers a list of such analyses in a footnote.

21Okabe and Aoyagi (1991) also proves the existence of a square-covering equilibrium. See Knoblauch
(2002) for a particularly elegant proof.

22This is more nuanced in 2D where Voronoi cell walls pivot with any movement such that only those
customers on the line of the direction of movement and between the firm and boundary are truly captive.
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In fact, beyond the equilibrium characterization, very little is known even about the un-
bounded, uniform case. In equilibrium, each firm is located optimally given the locations of
all other firms. Yet for a particular firm, A, we have no analytical solution for the optimal
location choice given the locations of all other firms except in a few special cases. This prob-
lem, maximizing a Voronoi region, is an open problem in computational geometry.23 If we
constrain firm A to select within a particular region24 meeting minor technical assumptions,
Dehne et al. (2005) proves that there exists a unique location that maximizes the area of A’s
region. The same paper shows that if the convex hull of A’s neighbors happens to form a
regular polygon with n > 4 sides, then A’s optimal location is at the center of the polygon.
Where the convex hull of opponents is an irregular polygon, we can use area formulas in that
paper to find the optimal location for A numerically. As we show in Figure 8b, which looks
at how A’s optimal position changes as one of its neighbors, C, is moved, a firm’s optimal
location appears to be at the center of the convex hull of its neighbors.25 But it does not
coincide with any of the myriad notions of polygon centrality that we have considered. This
leaves us without an analytical solution to the problem beyond the very specific case in which
the convex hull of A’s neighbors forms a regular polygon.

There is also an obvious heuristic argument against the presumption of equilibrium ex-
istence in two-dimensional spaces. Consider Figure 8a. Firm C has six neighbors, with the
convex hull of their positions forming a regular hexagon, as is the case for Firm A in Figure
8b. Consideration of the latter figure suggests that if we assume that i) C is located opti-
mally and ii) the locations of C and her other neighbors (B, J,K, L, and D) are given, then
we know A’s position. But the same argument is true for each of A’s neighbors: B along
with her other neighbors (G,H, I, J , and C) pins down A, as does G, F , E, and D, each
with their neighbors. And this is true for all firms: if a firm has k Voronoi neighbors, then
its position must, in equilibrium, solve k equations.26 As such, the existence of equilibrium
requires a solution to a significantly overdetermined system. Such systems can have solu-
tions, of course. Lösch’s hexagonal covering on the unbounded Euclidean plane with uniform
customer density is a perfect example—each of the six equations pinning down A yields the
same location. But we suspect that equilibrium existence is non-generic, a pleasant quirk
of unboundedness and uniform customer density.27 Unfortunately, we cannot speak to the
rank of the system without an analytical solution to the problem of maximizing a Voronoi
region.

Finally, we also note a few related models that combine competition on price with that

23For examples in that literature, see Cheong et al. (2004, 2007) and Fekete and Meijer (2005).
24A neighborship cell, which is a set of points such that A would have the same set of Voronoi neighbors

locating at any one of those points.
25Uber drivers appear to have worked this out intuitively. There are several how-to videos on YouTube in

which an experienced Uber driver shows the process of switching into the passenger app and then advises
the audience that they will get a ride sooner if they move to the center of an unoccupied region, essentially
mimicking our numerical analysis in Figure 8b.

26In the linear case, each firm has at most two Voronoi neighbors. And even in this less overdetermined
system, we know that equilibrium existence is not guaranteed, as shown in Eaton and Lipsey (1975).

27We are not the first to make such a conjecture. In Eaton and Lipsey (1975), the authors conjecture
that there exists no equilibrium on a disk with uniform density for n > 2 firms. Shaked (1975) proves that
conjecture for n = 3. Dasgupta and Maskin (1986) connects existence issues in location games to those in
other games with discontinuities in payoff functions.
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on location or product characteristic: Capozza and Van Order (1978) offers a generaliza-
tion of some earlier Löschian models. Salop (1979) adds an outside good/industry to the
Hotelling model. Novshek (1980) considers alternatives to Nash equilibrium. Economides
(1984, 1986a,b) experiment with the addition of reservation prices, the adjustment of the
convexity of utility functions, and an expansion to two dimensions. There are also parallels
with models of non-spatial product differentiation: Rosen (1974) offers a perfect competition
model, with a continuum of firms, of hedonic pricing where products are differentiated and
priced based on attributes—note that Rosen’s proof of equilibrium existence is exclusive to
the one-dimensional case. Gabszewicz and Thisse (1979) models quality where customers
have the same tastes but varying incomes.

In summary, there exists a rich theoretical literature on spatial competition, but using
it to generate predictions in an applied setting is impeded by multiplicity of equilibria,
potential equilibrium non-existence, and tractability issues. This motivates our agenda to
pursue alternative approaches, including agent-based models.

4.2 Agent-based models

An agent-based model (ABM) is a computational model for simulating the interactions of
autonomous agents to assess their effects on the system. While this inductive approach to
modeling comes largely from computer science, it is becoming increasingly prevalent in the
social sciences. Axtell (2000) describes three distinct uses of ABM in the social sciences.
Tesfatsion (2006) argues that it is a new, constructive approach to theory. Farmer and Foley
(2009) argue for its use in macroeconomics given the complexity of macroeconomic systems.
Hommes (2008) surveys their use in finance, particularly asset pricing. More related to our
question, Crooks et al. (2008) and Crooks and Heppenstall (2012) look at the particular
challenges of spatial ABM, and economists are starting to apply these models to Hotelling-
like environments.28

We can build agent-based models based upon the myopic best responding that we found
in the experiment. Agent myopia is a behavioral assumption in dynamic environments
under which an agent views the positions of her opponents as fixed when deciding whether
or not she would profit from changing her own position—that is, she simply maximizes her
instantaneous payoff flow.29 To define agent myopia, consider a dynamic continuous-time30

spatial game with payoff flows where each agent periodically makes decisions. Assume that
at any given moment at most one agent makes a decision and that each agent can revise her

28See van Leeuwen and Lijesen (2016). NetLogo, software for ABM, even includes a Hotelling model in
its model library (Ottino et al., 2009).

29Myopia is a dynamic-game analog of zero conjectural variance (ZCV), which historically has meant
simply that Nash equilibrium is being applied as a solution concept to a static game. In that setting,
when one checks a potential equilibrium by looking for a profitable unilateral deviation, the possibility of
an opponent response is ruled out by the fact that the game is static. The first use of ZCV that we find
is in Eaton and Lipsey (1972). The authors employ the term in critique of Löschian models in which, they
argue, equilibrium is not well defined due to the absence of an explicit assumption on conjectural variance.
While ZCV comes automatically in Nash equilibrium analysis on a static games, Lösch does not appeal to
Nash equilibrium—his work was contemporaneous with that of Nash. Therefore, equilibrium in the Löschian
model is not well defined without an explicit assumption on conjectural variance.

30This argument also applies to discrete-time games so long as at most one agent has a choice at any time.
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decision in a future time period. In this setting, if an agent takes the locations of opponents
as given, she is effectively not strategic—she simply maximizes her instantaneous payoff flow
given the current state at the moment of her decision. We say that this agent follows a
myopic best response (MBR) dynamic.

In motivating spatial competition with the ride-sharing application and designing a re-
lated experiment, we focus on a very specific environment without price competition.31 Most
applications of spatial competition also involve competition on prices. We can include prices
in spatial ABM’s with the MBR dynamic in two ways. The simplest would be to extend the
behavioral assumption to also cover prices—when an agent chooses a location and price, she
takes her opponents’ locations and prices as given and maximizes her instantaneous payoff
flow at the moment of the decision. Alternatively, we could construct hybrid models where
agents take their opponents’ locations as fixed but anticipate prices resulting from a Nash
equilibrium in a static price game, given the locations, immediately following their location
choice.32

The MBR dynamic has important connections to Nash equilibrium. One interpretation
of Nash equilibrium as a prediction is that it could result from an evolutive process in an
environment in which agents know little about the structure of the game but best respond
given their limited information and learn from outcomes.33 In this sense, Nash equilibrium
in a static game represents a fixed point under the MBR dynamic in a dynamic game. Brown
(1951) computes equilibria in static games algorithmically by applying the MBR dynamic
iteratively in fictitious dynamic play. Similarly, fixed points in the MBR dynamic on our
dynamic games represent Nash equilibira in their static analogs.34

The consequences of MBR dynamics on a lattice with local interactions are studied in
Blume (1993, 1995). The MBR dynamic is also common in evolutionary game theory,35

although that literature focuses on population games with many players. Agent myopia
and the MBR dynamic are tremendously powerful in that they allow us to model complex
continuous-time games as sequences of static individual optimizations. Agent-based models
in the social sciences commonly exploit behavioral assumptions to allow the representation of
individual agents as automata. Because of the assumed relative simplicity of agent behavior,
we can work in much richer environments than those used in game-theoretic analyses without
losing tractability, and this may allow us to better compare mechanisms that generate spatial
allocations and to evaluate relevant policies such as zoning and exclusive territories.

4.3 Application 1: an ABM in the experiment environment

Recall that we designed the experiment to represent the incentives of idle drivers in a ride-
sharing setting. Because we use a grid and the `1 norm for distance, the experimental envi-
ronment represents competition on an urban road grid with uniformly distributed expected
demand. As we described in Section 1, a ride-sharing service may wish for idle drivers to po-

31Since Uber and Lyft set prices centrally, drivers cannot compete on price.
32We can only do this if pure-strategy price equilibria exist and are computable. Relevant conditions for

existence are given in Caplin and Nalebuff (1991).
33See Binmore (1987, 1988) and Gilboa and Matsui (1991).
34In this sense, our dynamic agent-based models may yield further insight on static games.
35See Sandholm (2010, Chapter 6) for best response dynamics in that setting.
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sition themselves so as to minimize expected wait-times for passengers. An obvious question
then is whether the myopic best responding that we find in the experiment yields spatial
allocations that do well by this metric, measured by ξ(st) as defined in Section 2.

We evaluate the efficiency of the dynamic paths of our experimental sessions and compare
those with the paths of MBR simulations starting from various initializations. In our MBR
simulations, each player chooses the move that maximizes her flow playoff (FP1) at the time
of her decision.

Figure 9 shows the results. Avg. Exp. takes the spatial inefficiency from each experi-
mental session at iteration t and averages them. The initialized allocation in the experiment
was quite efficient, but players’ early choices increased efficiency further. Avg. Sim1 mimics
the experiment with 18 sessions but replaces the observed behavior with that of simulated
MBR agents. In this setting, MBR usually led players to optimal or near-optimal spatial
allocations. Avg. Sim2 and Avg. Sim3 are equivalent but were run from different, less
efficient, initial allocations.
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Figure 9: Spatial inefficiency in experiment and simulations

The players in our experiment did choose the FP1 move a majority of time. However,
the average spatial inefficiency in the experiments remained substantially higher than that
of allocations achieved by agents who perfectly implement MBR in simulations. Given that
the interests of myopic best responding drivers coincide well with the interests of the ride-
sharing service, we believe that ride-sharing services may wish to allow drivers to see other
nearby drivers and assist them in best responding to their neighbors.

4.4 Application 2: an ABM in a ride-sharing environment

We now explore whether the myopic best responding that we find in the experiment yields
efficient spatial allocations on a more realistic transportation network. Suppose I is the
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set of drivers for a ride-sharing service. A dynamic game of spatial competition represents
drivers competing for passengers on a transportation network G = (N , A). The nodes of
this network represent intersections, and the edges represent roads. The length of the edges
are proportional to the length of the roads in the city.

We recreate the road network of the City of Oldenburg, Germany using data from
Brinkhoff (2002). There are 6,105 nodes and 7,029 edges, and the average degree of the
nodes is 2.3. We compute an approximately optimal allocation of 60 drivers in Oldenburg
using a myopic (greedy) heuristic, as in Kuehn and Hamburger (1963). Call this optimal
allocation s∗—we find that d̄(s∗) = 480.18 meters. Figure 10 shows the transportation net-
work and the approximately optimal allocation of drivers, with each driver represented by a
black diamond.

Figure 10: Transportation network in Oldenberg with approximately optimal allocation

To simulate the game played between MBR drivers, we initialize the set I of drivers on
the nodes of the transportation network and run the MBR algorithm for T = 5000 iterations.
Figure 11 shows spatial inefficiency along the dynamic path of one simulation. We observe
this same tendency in all simulation runs.

Figures 12 and 13 show the initial and final allocations, respectively. The spatial ineffi-
ciency of the initial allocation is ξ(s1) = 2.02 and the spatial inefficiency of the final allocation
is ξ(s5000) = 0.55. Thus, the decisions made by MBR drivers resulted in a large decrease in
spatial inefficiency, which implies a large decrease in expected consumer wait-times.36 We
note that spatial inefficiency did not decrease monotonically along the dynamic path.

Given that the interests of myopic best responding drivers coincide well with the interests
of the ride-sharing service even in this setting with a more realistic transportation network,

36When we simulate MBR drivers starting from the approximately optimal allocation s∗, spatial inefficiency
increases from ξ(s∗) = 0 to ξ(s1000) = .08 after 1000 iterations. Therefore, individual incentives appear to
push drivers away from the periphery and towards the center, which increases inefficiency.
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Figure 11: Spatial inefficiency along dynamic path of simulation with T = 5000

we believe that ride-sharing services may wish to allow drivers to see the locations of nearby
drivers and assist them in best responding to their neighbors.

However, in the simulation discussed above, MBR agents did not converge to an optimal
spatial allocation. Within 5000 iterations, drivers converged to a cycle of spatial allocations
in which spatial inefficiency was near .55 for all allocations in the cycle. This result suggests
that allowing agents to myopically best respond may reduce consumer wait-times but it need
not converge to an optimal outcome.

We believe one contributing factor to inefficiency in fixed points (or cycles) under the
MBR dynamic is boundary behavior, where individuals near the periphery have incentives
to move inwards as they can do so without sacrificing market share on the periphery. To
isolate this, consider the approximately optimal allocation of drivers s∗ on Oldenburg’s trans-
portation network, and suppose we fix the positions of the drivers that are located on the
outer periphery of the network. Let Iouter be the set of 14 drivers on the outer periphery.
We create a new spatial allocation in which the drivers in Iouter are at their locations in
s∗, then we generate a random allocation of the remaining drivers. Finally, we simulate
another game played between MBR drivers on Oldenburg’s transportation network, but we
only allow drivers in the set I \ Iouter to move in the simulation.

In this setting, the spatial inefficiency of the initial allocation is ξ(s1) = .34 and that
of the final allocation is ξ(s1500) = 0.2. Fixing drivers on the periphery and allowing for
MBR movement in the center of the transportation network resulted in significantly lower
final spatial inefficiency, suggesting that boundary behavior is indeed a contributing factor
to inefficiency in MBR simulations.

This result suggests another interesting policy for ride-sharing platforms. As these plat-
forms start to incorporate automated vehicles alongside regular vehicles, they may want to
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Figure 12: Initial allocation of 60 drivers in Oldenburg; ξ(s1) = 2.02

Figure 13: Final allocation of 60 drivers in Oldenburg; ξ(s5000) = 0.55
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have these automated vehicles target the periphery, allowing spatial competition between
drivers in the interior.

5 Conclusion

In this paper, we show the prevalence of myopic best responding in an experiment with a
dynamic spatial game that represents the incentives of idle drivers in a ride-sharing context.
We argue that, in light of this experimental finding and the challenges of static analyses
that we detail, agent-based modeling may be a fruitful approach in developing predictive
models in complex spatial environments. In applications, we show that agent-based models
in our experimental environment and in a more realistic transportation network suggest that
ride-sharing services may benefit from allowing each idle driver to observe the locations of
other idle drivers.
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Walras, L. (1883). Théorie mathématique de la richesse sociale. Guillaumin.

29



A Experiment instructions

Players were shown an instructional video at the beginning of each experimental session to
explain how the game is played and how their payments would be calculated. Players were
then given the chance to ask questions before the game began. See the instructional video
at http://youtu.be/7hcN24RFI3M. The following is a transcript of the instructional video:

Welcome to the BRITE Lab and thank you in advance for participating in our
experiment on spatial competition. You are about to play an experimental game
of spatial competition. The duration of the experiment will be about 90 min-
utes. Please do not talk to other participants during the experiment or use the
computers in ways other than those described here. After participating in this
experiment, please do not discuss it with others who may also participate in the
future. After watching these video instructions, you may ask questions.

This is the game board that you will see projected. It may look slightly different,
depending on the computer. At the top left, we see that it is currently player
3’s turn. You have already been assigned player numbers. The turn order is
randomly determinedafter each turn, it is as if the next players turn is decided
by rolling a five-sided die. This can result in you having multiple turns in a row or
going for long stretches of time without having a turn. Below the turn indicator,
you can see a list of the indexed locations of each of the five human players.
These indices will be important for operating the calculator on your computer.
Reading the top line, we see that player 1 is located at grid coordinate F5. F
represents the column and 5 represents the row. Sure enough, we can see player
1 at coordinate F5.

At the bottom-left, you can see the controls that the experiment leader will use
to move you and the other human players around the board. When it is your
turn, you will select to move either up, down, left, or right. You may also stay in
your current location. Once you have made your decision, you will communicate
it to the experiment leader who will then input the choice using these buttons.
Suppose player 3 chooses to move up and communicates this to the leader. Now
the leader hits the U button for up, and we see that the gameboard is redrawn
with player 3 one row higher than before. We also see that player 4 has been
randomly selected for the next turn.

So far, we have not discussed how you should decide where to move. We will
show you precisely how your cash payment is determined in a moment, but lets
first focus on the grid displayed on the game board. The game is played on a
21 by 21 grid. There are actually 13 players in this game, including 1-2-3-4-5
human players and 1-2-3-4-5-6-7-8 computer players surrounding the grid. The
computer players will remain in their current positions throughout the game.

Each human player is given a specific color. Player 4 is blue. Her current location
is marked in dark blue. Then, all squares in the grid that are closer to player
4 than any other player (including the computer players) are marked with light
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blue. For instance, look at grid coordinate J10, shaded light blue. It is 1-2-3-4-5-
6-7 squares from player 4’s current location. This is less than the distance to any
other player. Player 3 is 1-2-3-4-5-6-7-8 squares away. Player 1 is nine squares
away: 1-2-3-4-5-6-7-8-9. All of the light-blue shaded squares are currently in
player 4’s area.

Some squares are equally far from two or more players. For instance, I10 is
1-2-3-4-5-6-7-8 squares from player 4. It is also 1-2-3-4-5-6-7-8 from player 1.
Squares equally far from multiple players (of which at least one of whom is a
human player) are shaded in black. For scoring purposes, such a square is split
evenly among the players who are equidistant from it. So I10 contributes half of
a unit to player 4’s area, and half of a unit to player 1’s area. Sometimes squares
may also be split between 3 or more players. Finally, squares shaded grey are
closer to the computer players than to any human player.

The basic objective of the game is to have as large of an area as possible since
your payment will depend on the average size of your area over the duration of
the experiment. Therefore, to maximize your cash payment, it is in your interests
to move strategically to have as large of an average area over the course of the
experiment as possible.

When it is your turn, you make take up to two minutes to decide your next move.
Note that you are not able to move into a square currently occupied by another
player (including human and computer players). If player 5 was in square I17,
for instance, player 4 would not be allowed to move left. Nor would player 5 be
allowed to move right into J17. Now lets look at the calculator program that is
on your computer screen.

We provide you with a calculator to facilitate your decision-making. The calcu-
lator can be used to calculate (and show) the areas for any possible allocation of
the five human players. Each of you has the calculator in front of you on your
computer.

At the top left of the calculator, you may input player locations. Recall that the
indices of the current locations are provided on the gameboard that’s projected
for all to see. Once you have inputted locations, hit calculate to redraw the
simulated gameboard for that allocation of players. As an example, let’s try
moving player 4 down one position from her current location, from J17 to J18.
If we wanted to, we could move multiple players at once by editing all of the
locations. You must hit calculate after editing the locations to regenerate the
gameboard.

At the bottom left of the calculator, you can see the size of the areas resulting
from the locations that you have inputted. These areas include the appropriate
portions of squares that are equally far from multiple players. On the grid itself,
you can see what the gameboard would look like if players were in the locations
that you inputted.

Please note that the calculator does not update itself to the current locations
when players move. If you want to reset your calculator to the current locations,
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you have to do it manually by inputting the location indices listed for each player
on the game board. You may use the calculator at any point in the experiment,
whether or not it is your turn. You may use it as much or as little as you want.
We do collect data from the calculators. But nothing you do with the calculator
will directly affect your payment. Only the selected moves by all participants
affect payoffs.

Now lets look at how your cash payment is determined.

To calculate payments, call each player’s turn one iteration. The size of your
area is calculated in each iteration. Then, we calculate your average area size,
averaging over all iterations. Finally, we multiply your average by a number, X,
to calculate your cash payment, rounding up to the nearest dollar. X is the same
for all players.

The multiplier, X, has been selected to target total payments to human players
in the game at around $100. This implies an anticipated average participant
payment of $20. Your actual payment depends on the choices of all participants,
so we can make no minimum payment guarantees. Also, your final payment is
not necessarily a good measure of your performance in the experiment, as some
players start with more favorable positions.

The experiment leader will terminate the game shortly before 90 minutes has
elapsed from the experiment start time. We will have as many turns as time
allows. This is the end of the instructional video. You may now ask questions to
the experiment leader.
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