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Abstract

Computing optimal spatial allocations is important for two reasons. First, one may
wish to implement them. Second, without a sense of an optimal spatial allocation, one
cannot evaluate the efficiency of an observed spatial allocation. Suppose you have p
facilities and wish to place them in a city to minimize the average distance between a
consumer and her nearest facility. We develop a neighborhood search heuristic for this
p-median problem with continuous demand. We discuss challenges to implementing the
heuristic, propose solutions, and describe how it can be embedded in hybrid heuristics.
We then apply the heuristic to computing optimal spatial allocations of facilities in
Chicago, Atlanta, and Los Angeles. In comparing these optimal allocations to the
actual ones, we find that allocations of supermarkets do relatively poorly in minimizing
transportation costs for consumers.

1 Introduction

There are a variety of important problems relating to facility location.1 In covering problems,
one seeks the minimum number of facilities, e.g. fire stations, and their locations, such that
each household is within a given distance of its nearest facility. In center problems, one
takes the number of facilities (p) as given and places them so as to minimize the maximum
distance from a household to its nearest facility. In median problems, one places them
to minimize the sum of consumers’ distances rather than the maximum.2 In this paper,

∗We wish to thank Antonio Penta, Daniel Quint, Ken Hendricks, Justin Sydnor, Lones Smith, Marzena
Rostek, and Marek Weretka for their guidance and feedback. We have benefited from feedback from seminar
participants at the University of Wisconsin, Universidad de los Andes (Santiago), Université de Sherbrooke,
Macalester College, and Carleton College as well as at the 2018 INFORMS Annual Meeting. R© denotes
random author order. Data and code from the application are available upon request.

1See Love et al. (1988) and Drezner and Hamacher (2001) for a survey and history of the literature, and
Daskin (2011) for a textbook treatment on facility location on discrete networks.

2Median problems are often called Weber or Fermat-Weber problems as they are generalizations of prob-
lems first discussed in Weber (1929) and of the Fermat point, which is the special case of the point that
minimizes the total distance to the three vertices of a triangle.
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we focus on a variant of the p-median problem in Euclidean space, as opposed to a discrete
network, with continuous consumer demand. In this environment, we develop a neighborhood
search heuristic that finds local optima and can easily be embedded into hybrid heuristics
or metaheuristics to find approximate global optima.

The p-median problem, first proposed in Hakimi (1964, 1965), can be formulated as
follows:

Problem 1: The p-median problem

Inputs and decision variable:

N = a set of nodes in a network

wm = demand at node m ∈ N
d(m,n) = distance between demand node m ∈ N and candidate site n ∈ N

p = number of facilities to locate

s = (s1, s2, . . . , sp) = choice of p nodes at which facilities are to be located

Problem:
Minimize

s
z1 =

∑
m∈N

wm ·min
k
d(m, sk)

The goal in the p-median problem is to allocate p facilities across a network to minimize
the total (or average) travel distances for consumers. Kariv and Hakimi (1979) shows that
finding a p-median is NP -Hard. For even moderately sized problems, the number of possible
solutions to evaluate is huge—for example, with 100 nodes and p = 20, there are

(
100
20

)
> 1020

possible allocations. Because of this, one typically solves p-median problems with heuristics
including constructive, local search, mathematical programming and others. Metaheuristics
are higher-level heuristics designed to generate specific heuristics for specific problems—
these include tabu search, variable neighborhood search, genetic search, simulated annealing,
neural networks, and many more. Mladenović et al. (2007) surveys applications of heuristics
and metaheuristics to the p-median problem.

In the p-median problem, the space is discrete in that consumers and facilities are located
on a network. A similar question can be posed on the Euclidean plane:

Problem 2: The p-median problem with continuous feasible placements

Inputs and decision variable:

N = a discrete set of consumer locations (N ⊂ R2)

wm = demand at location m ∈ N
d(m,n) = distance between m ∈ N and candidate site n ∈ R2

p = number of facilities to locate

s = (s1, s2, . . . , sp) = choice of p locations for facilities (each sk ∈ R2)
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Problem:
Minimize

s
z2 =

∑
m∈N

wm ·min
k
d(m, sk)

In this problem, which is also called a location-allocation problem or the multisource
Weber problem, the set of options is infinite as facilities may be positioned anywhere on
the Euclidean plane. Cooper (1963) shows that the objective function is neither concave
nor convex and proposes heuristics. Megiddo and Supowit (1984) proves that finding the
solution is NP -hard. Brimberg et al. (2000) surveys and compares the many heuristics and
metaheuristics for this problem.

Our problem is like Problem 2 except that we also allow consumer demand to be con-
tinuous. That is, instead of having discrete consumers located at specific locations on the
Euclidean plane, we have an integrable consumer density function over the plane. The
problem can be formulated as follows:

Problem 3: The p-median problem with continuous demand

Inputs and decision variable:

X ⊆ R2 is a subset of Euclidean space

f : X → R≥0 is an integrable consumer density function

d(m,n) = distance between m,n ∈ X
p = number of facilities to locate

s = (s1, s2, . . . , sp) = choice of p locations for facilities (each sk ∈ X)

Problem:

Minimize
s

z3 =

∫
X

f(x) ·min
k
d(x, sk) dx

Here we have a continuum of consumers across a subset of the Euclidean plane. Note
that f must be integrable but it need not be continuous—we call the demand continuous to
distinguish it from the problems above with discrete consumers. Newell (1973) and Geoffrion
(1979) are the first to suggest modeling demand with a continuous function. Iri et al. (1984)
presents the only heuristic, a gradient-based search, for Problem 3 with Euclidean distances.3

Fekete et al. (2005) argues the problem’s importance and is the first to develop algorithms
for exact solutions with Manhattan (`1) distance—the authors acknowledge that comparable
algorithms for Euclidean distance (`2) are likely to require intractable integration.

We believe that Problem 3 is most appropriate in two particular settings. First, in
Auerbach and Dix (2018), we discuss the problem of a ride-sharing service that wishes to
place its drivers so as to minimize wait-times for passengers. In this setting, the service may
have expectations about where, and with what probabilities, the next ride request is likely

3Murat et al. (2010) offers a similar heuristic that allows for richer cost structures including facility
capacities and transportations costs that vary with demand volumes. See also Okabe et al. (1992) and
Okabe and Suzuki (1997) for similar approaches using Voronoi diagrams on other problems.
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to emerge. f could be interpreted as a probability density function over the location of the
next ride request. Solving Problem 3 would minimize the expected distance between the to-
be-revealed ride request and its nearest driver, thereby minimizing the expected wait-time.
In other settings, also, firms or planners may have expectations of consumer density better
represented by an integrable function than by discrete demand nodes.

Second, when an analyst is working with spatially aggregated data, she can often place a
particular consumer only within a certain region rather than at a specific point. For instance,
with census data, we observe the number of consumers in a census tract as well the precise
coordinates of the tract’s vertices, but we do not observe the specific locations of residents
therein. We work with an application involving census data in Section 3.

Problems 1 and 2 receive more attention than Problem 3. We suspect this is because
the inclusion of integration in place of summation in the objective function is problematic
for the purposes of computation. Numerical integration can be computationally costly, so
including it in an iterative process can limit its feasibility for larger problems. It is also fairly
easily avoided by transforming Problem 3 into Problem 2 by discretizing and aggregating the
demand into nodes or further into Problem 1 by also discretizing the space into a network.
For instance, one could discretize census data by assuming that all residents within a census
tract live at the centroid of that tract. Given that one is looking only for approximate
solutions to these problems in any case, the cost of such discretization is simply that the
solution is perhaps slightly more approximate.

On the other hand, discretization and aggregation may introduce error that it is hard
to quantify (Francis et al., 2009). Two very different polygons may share a centroid—
aggregating a census tract’s demand to its centroid discards much of the richness of the spatial
data. With census tracts, we believe it is more appropriate to assume that consumers are
distributed uniformly within each.4 Where a planner has an integrable function representing
expected demand, we believe it best to use it directly. Therefore, we propose a heuristic
to solve Problem 3. Our heuristic is a neighborhood search heuristic in that it converges to
local optima of Problem 3 through iterative adjustments of each facility’s location within its
neighborhood.

Maranzana (1963) develops the original neighborhood search heuristic for the p-median
problem. In the p-median problem, a particular facility’s neighborhood is the set of de-
mand nodes that are served by the facility, i.e. those that are closer to that particular
facility than to any other. In Figure 1, assume there is one consumer at each node and
the numbers on the edges represent distances between nodes. Given two facilities located
at the nodes represented with triangles, the thick, diagonal, dashed line separates the two
neighborhoods. Local search seeks to reposition each facility to best serve its neighborhood.
In the left neighborhood, the average distance to facility is 2 and this cannot be improved
by repositioning the facility to another node. In the right neighborhood, the average dis-
tance is 3.75. By moving the facility inward, the neighborhood average would reduce to
2.25. The heuristic alternates between implementing local adjustments and recomputing the
neighborhoods—it is sometimes referred to as an alternate heuristic. In this example, the

4While we could approach that assumption by generating multiple demand nodes within each tract and
distributing the consumers across the nodes, we would then have a discrete model with many nodes, which
yields its own computational challenges.
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Figure 1: Neighborhood search on a discrete network

first adjustment would result in the top-central node joining the right neighborhood, moving
the neighborhood boundary to the thin dotted line. Then it can be shown that no further
local adjustment is beneficial, so the heuristic terminates.5

Figure 2: Neighborhood search with continuous demand

With continuous demand, a facility’s neighborhood is still the set of consumers that
is closer to the facility than to any other, but this now manifests as the facility’s cell in a
Voronoi diagram of the space. Figure 2 is a Voronoi diagram of six facilities, each represented
by a triangle, on a disk. The solid lines divide the Voronoi cells, where each cell is the set of
points in the disk closest in Euclidean distance to a particular facility. Neighborhood search
in this context involves taking a particular facility and positioning it within its Voronoi cell
to minimize the objective function applied locally to that cell. For the left-most facility,
whose cell is shaded, this requires moving it up and to the left to the point. The adjustment
also results in a new Voronoi diagram, as indicated by the thin dashed lines. We prove that
such a movement, which by definition reduces the objective function applied locally, also

5In this example, the heuristic terminates at the global optimum for the 2-median problem on the given
network, though this need not occur generally.
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reduces the objective function applied globally. Iterating this procedure, therefore, must
converge to a local minimum in the objective function.6

Readers familiar with computer science or electrical engineering may recognize similarities
between this procedure and Lloyd’s algorithm, which finds evenly spaced sets of points in
subsets of Euclidean spaces (Lloyd, 1982). While the logic of how the algorithm works is
identical, there are two key differences: First, in Lloyd’s algorithm the relevant objective
function is the integral of the squared distances. Second, Lloyd’s algorithm weights all
points equally, i.e. f is uniform. In this context, the optimal local adjustment simply moves
a facility to the centroid of its Voronoi cell.

To find the optimal local adjustment in our heuristic, we actually need to solve the
1-median problem with continuous demand within the Voronoi cell. While it might seem
problematic that our heuristic to solve the p-median problem with continuous demand re-
quires us to repeatedly solve a smaller 1-median problem with continuous demand, it works
well in practice because an approximate solution to the smaller problem can be computed
efficiently. If f is uniform, this reduces to finding the geometric median of the Voronoi cell.
Since finding the geometric median of a polygon is challenging, we discretize the problem
at this stage by replacing the polygon with a set of points randomly drawn from it. This
also allows us to account for non-uniform f in that we draw points from the polygon in
proportion to their density in f . Then, we find the approximate geometric median of this
set of points.7

Our neighborhood search heuristic for Problem 3 has two obvious benefits over the
gradient-based search of Iri et al. (1984). First, it is not necessary to evaluate the objec-
tive function, z3, at any point in the heuristic.8 This minimizes the computational burden.
Second, it is significantly easier to implement.

The paper proceeds as follows: In Section 2, we define the heuristic, prove its convergence,
and discuss extensions. In Section 3, we implement the heuristic to optimize allocations of
supermarkets, hospitals, and fire stations in three US cities. We also use these computed
optimal allocations to measure the implied inefficiencies of the actual allocations of those
facilities in those cities. We conclude in Section 4.

2 Neighborhood search heuristic

In this Section 2.1, we define precisely our neighborhood search heuristic and prove that it
converges to a local optimum of Problem 3. In Section 2.2 we discuss modifications to the
heuristic to speed implementation. In Section 2.3 we propose embedding the heuristic in a

6We describe how one might hope to arrive at a global optimum in Section 2.
7Algorithms for finding the geometric median of a discrete set of points go back to Weiszfeld (1937). See

Bose et al. (2003) and Cohen et al. (2016) for modern alternatives. While we do discretize the polygon into
a set of points, we do this with thousands of points on an individual Voronoi cell—if we did this with nodes
on the overall space, we would run into computation issues due to the number of nodes. The minimal error
that may be introduced from the discretization in a given iteration is unlikely to affect final outcomes given
subsequent iterations.

8In practice, it may make sense to set a stopping condition when ∆z3 < γ, where ∆z3 is the change in
the objective function over some duration or iteration count and γ is a tolerance, but even these stopping
conditions can be checked infrequently.
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hybrid or metaheuristic.

2.1 Simple neighborhood search

Let X ⊂ R2 denote a bounded region on the Euclidean plane. Let I = {1, . . . , I} denote
the set of facilities. A spatial allocation s is an I-tuple (s1, s2, . . . , sI) ∈

∏
i∈I X that records

the locations of facilities in X. Thus, s is a list of I locations, where the ith element, si, is
the location of facility i. Let SI =

∏
i∈I X be the set of all possible spatial allocations and

define s−i ∈
∏

j∈I\{i}X as the spatial allocation of all facilities other than i’s. This notation
allows us to consider the movement of facility i holding the positions of her opponents fixed.
We will refer to the 2-tuple (x, s−i) as the spatial allocation in which facility i is positioned
at location x ∈ X and the other facilities are positioned according to s−i. We will frequently
compute the Voronoi diagram of s, Vor(s), to set the neighborhoods. Vor(s) partitions X
into Voronoi cells Vi(s) = {x ∈ X | d(x, si) ≤ d(x, sj),∀j 6= i} for each facility i ∈ I.

In its simplest form, our heuristic solution to Problem 3 can be stated as follows:

Procedure 1 Simple neighborhood search heuristic (SNS)

1: function SNS(X, f, s, tolerance) . s is an arbitrary initial allocation
2: complete = 0
3: while complete = 0 do
4: for i = 1 to I do
5: Compute Vor(s)
6: s′i = arg miny∈Vi(s)

∫
Vi(s)

f(x) · d(x, y) dx . Find optimal adjustment

7: ∆i = d(s′i, si) . Measure adjustment size
8: si = s′i . Implement adjustment
9: end for

10: if maxi ∆i < tolerance then
11: complete = 1, . Terminate when adjustment sizes are below tolerance
12: end if
13: end while
14: end function

The heuristic iteratively computes the Voronoi cells and then implements optimal local
adjustments. We now show that it converges to an approximate local minimum of Problem
3 :

Theorem 1. Procedure 1 converges to an approximate local minimum of Problem 3.

Proof. We will first argue that each local adjustment computed in Line 6 and implemented in
Line 8 weakly reduces the objective function of Problem 3. Let zi(s) =

∫
Vi(s)

f(x)·d(x, si) dx.

Now, note that the the objective function for Problem 3 can be rewritten as follows:

z(s) =

∫
X

f(x) ·min
k
d(x, sk) dx =

∑
i∈I

(∫
Vi(s)

f(x) · d(x, si) dx

)
=
∑
i∈I

zi(s)
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This exploits the fact that Vi(s) represents the set of points closest to si and breaks the
integral over X into a sum of integrals over the Voronoi cells. Moving facility i from si to
s′i must weakly reduce zi(s) by the definition of s′i in Line 6. For consumers in Vj(s) for
j 6= i, there are two possibilities: First, if the consumer’s location is in Vi(s

′
i, s−i), then the

consumer will move into i’s Voronoi region as a result of the adjustment of facility i. If this
is so, that consumer’s distance must be reduced by the adjustment from si to s′i—otherwise,
she would remain in Vj(s

′
i, s−i), with j 6= i. Second, it may be that a consumer is located in

Vj(s) and Vj(s
′
i, s−i) for j 6= i. In this case, the consumer’s distance is unchanged. Therefore,

it follows that each zj(s), for j 6= i, is weakly reduced by the movement of i from si to s′i.
If each individual adjustment reduces the objective function, then the procedure must

eventually terminate for any non-zero tolerance. The resulting allocation is an approximate
local optimum of Problem 3 in that, for any given tolerance, the procedure may be terminated
before it reaches the precise fixed point. �

Figure 3 illustrates the proof. The figure shows a spatial allocation of seven facilities. We
consider an adjustment for the central facility. The neighborhood of the central facility, its
Voronoi cell, is denoted by the solid hexagon. The optimal local adjustment moves it to the
small circle, which is the site that minimizes the objective function applied on the Voronoi
cell—with uniform demand, this is the geometric median of the solid hexagon. The dashed
hexagon represents the neighborhood of the central facility following the adjustment.

Figure 3: A neighborhood adjustment reduces the objective function

To argue that the adjustment reduces the overall objective function, observe how it affects
consumers outside of the solid polygon. It results in consumers in the green shaded region
switching to the central facility. If they are switching, it is because they are now closer to
the central facility than they were to their closest facility prior to the adjustment, so those
consumers are made better off. No other consumers outside of the solid hexagon are affected,
hence it follows that the adjustment must reduce the overall objective function.
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While it is not necessary for the proof, consider also the red area in Figure 3. These
consumers are further from the central facility following the adjustment then they were prior.
Their lost welfare was taken into consideration when picking the optimal local adjustment. In
fact, however, consumers in the red region are not as worse off as it would appear. Following
the adjustment, they are now closer to facilities other than the central facility—fixing their
assignment to the central facility overstated their welfare loss. This strengthens the degree
to which the local adjustment must reduce the objective function.

In a local neighborhood search heuristic on a discrete network, moving a facility may
not affect the neighborhoods. Therefore, one can reach a fixed point quickly but this fixed
point may be substantially suboptimal in that it may fail to implement changes that improve
the objective function in areas outside of the neighborhood. One of the nice properties of a
neighborhood search heuristic with continuous demand is that any adjustment in the location
of a facility results in a redefinition of the neighborhoods. The redefinition of neighborhoods,
in turn, will always result in a new optimal location in at least one neighborhood, provided
f(x) > 0 for all x ∈ X. With continuous demand, we never expect to reach a fixed point.
Instead, the heuristic asymptotes to a local optimum and we terminate it when we think we
are close enough, i.e. within a tolerance.

2.2 Modifications to facilitate implementation

There are two obvious challenges with the implementation of the heuristic. The first is that
computing the optimal adjustment, s′i, is non-trivial. The second is that the included loop
requires sequential, not simultaneous, computations and is not conducive to parallelization.

Our solution to the first challenge is a procedure that takes as inputs a Voronoi cell (Vi),
a density function (f), and a count for the number of points to be used in the discretization
of the Voronoi cell (N). It outputs the optimal adjustment for the discretized Voronoi cell:

Procedure 2 Compute optimal adjustment (s′i)

1: function ComputeOptimalAdjustment(Vi, f, N)
2: g = rescaled f, such that

∫
Vi
g(x)dx = 1

3: sample = N points drawn randomly from Vi with weighting from g
4: s′i = geometric median of sample
5: end function

Procedure 2 approximates the Voronoi cell and f by a discrete set of points and then
finds the geometric median of that set.9

Our solution to the second issue, regarding parallelization, is simply to swap lines 4 and
5 in Procedure 1, bringing the computation of the Voronoi diagram outside of the for loop.
Technically, with this configuration, it is no longer necessarily true that each adjustment
will weakly reduce the objective function. If several adjustments have already been made,
an optimal adjustment on an out-of-date Voronoi cell could increase the actual objective
function. In practice, however, this is unlikely to occur and inconsequential in any case. If

9Again, see Weiszfeld (1937), or Bose et al. (2003) and Cohen et al. (2016) for more modern solutions.
This functionality is also efficiently built-in with some software, including Mathematica.
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such an adjustment is made, it will be undone in subsequent iterations in which the cells have
been updated. Also, as the algorithm converges, the sizes of the adjustments are reduced and
therefore so is the degree to which the neighborhoods change as a result of the adjustments.
Early bad adjustments based on out-of-date Voronoi cells will be undone by subsequent
adjustment, and bad adjustments are less and less likely to occur as the algorithm converges
and the neighborhoods become more static.10

The benefits of this configuration are obvious: with the Voronoi cells held constant, one
can compute the optimal adjustments for all I Voronoi cells simultaneously in a parallelized
setting. The computation can be distributed across as many as I cores.

2.3 Embedding neighborhood search in a hybrid heuristic

The neighborhood search heuristic described in Procedure 1 can be run from an arbitrary
starting spatial allocation. On the other hand, it will converge much more quickly, and
possibly to a better local optimum, if it is given a good allocation to start from. To this end,
one could compute a large set of random spatial allocations, evaluate the objective function
on each, and run the heuristic on the best among them.11

Another alternative would be to construct a good starting allocation using a myopic
(greedy) heuristic à la Kuehn and Hamburger (1963): Draw a large set of random points
from X. Move a single facility across all of the points, evaluating the objective function in
each case, and finally placing the facility at the point that minimizes the objective function.
Then, taking the location of the first facility as given, try placing a second facility at each
of the points, evaluating the objective function with two facilities in each case and placing
the second facility to minimize it. Repeat until all facilities are placed.

Beyond reducing computation times by providing a good starting allocation, one may
also hope to find the global optimum, or at least a good local optimum. There are several
approaches for this. First, one could run the local search heuristic from many starting
allocations and select the best local optimum. Second, one could implement a shaking
procedure. A shaking procedure takes a local optimum and disrupts it. In our context, this
could involve taking one or more facilities and moving them to new locations in X. Then
the local search heuristic could be resumed to find a new local optimum.

It could be particularly useful to look for global adjustments that may not be realized
with neighborhood search. For instance, one could look for local maxima of h(s, x) =
f(x) ·mink d(sk, x) as areas with significant density and distance from facility in allocation
s—these are good candidate sites for a facility. To find candidate sites for facility removal, one
could look at sites with low market share, i.e.

∫
Vi(s)

f(x)dx. Evaluate all origin-destination

pairs and implement the adjustment that reduces the objective function the most. Resume
local neighborhood search to find a new local optimum.

Ultimately, we see local neighborhood search as being most effective as a subroutine
within a hybrid heuristic that combines constructive approaches, local neighborhood search,
and global searches. The exact nature of that hybrid heuristic would depend on the specific
problem to which it was being applied.

10It is also possible that this affects which local minimum the procedure converges to.
11To minimize computation time, we would suggest evaluating the objective function using Monte Carlo

integration or something similar.

10



3 Application: facilities in US cities

In this section, we apply the local search heuristic on facility location problems in the US
cities of Chicago, Atlanta, and Los Angeles. While it may be of some interest to see what
optimal spatial allocations look like in these environments, we can also use the computed op-
timal allocations as a benchmark to measure the inefficiency of the actual spatial allocations
of the facilities in those cities.

In Section 3.1, we define our measure of spatial inefficiency. In Section 3.2, we note the
modeling assumptions implied by the use of our measure. We discuss the sources of our data
on actual spatial allocations in Section 3.3. Section 3.4 details the specific implementation
of the heuristic in this environment. We present the results in Section 3.5.

3.1 Defining spatial inefficiency

Our measure of the inefficiency of a spatial allocation is based on the degree to which it yields
higher transportation costs than an optimized spatial allocation with the same number of
facilities. Therefore, we first look at the average distance to nearest facility for an observed
allocation s.12 d̄(s) is that average:

d̄(s) =

∫
X
f(x) ·mini (d(x, si)) dx∫

X
f(x) dx

(1)

To compare across different applications, we look not just at the average distance but
also the difference between the average distance and what the average distance would be in
an optimized allocation, holding I fixed. (2) defines an I-optimal spatial allocation, s∗I , as
one which minimizes the average distance.

s∗I ∈ arg minw∈SI d̄(w) (2)

Finally, (3) defines a measure of spatial inefficiency, ξ(s), as the difference between the
average distance in s and that in s∗I , dividing by the latter to get a percentage difference
that abstracts from units.

ξ(s) =
d̄(s)− d̄(s∗I)

d̄(s∗I)
(3)

Note that our measure of spatial inefficiency does not account for prices. This is by design as
it allows us to apply it to a variety of spatial applications, only some of which will involve price
competition. However, it also means that a social planner may prefer a spatially inefficient
allocation over one that is spatially efficient if the former yields advantageous consequences
in terms of prices.

3.2 Modeling assumptions

Most facility location problems are in two-dimensions with non-uniform customer distri-
butions. To consider efficiency in these settings, we need data on the actual allocations

12Our methods are easily extended to quadratic transport costs and average squared distances.
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of facilities and the customer distribution. We also need to be able to compute optimal
allocations to form the reference points for our calculations of spatial inefficiency.

In this section, we evaluate allocations of supermarkets, hospitals, and fire stations in
three major cities. We refer to these generally as facilities, rather than firms, to accom-
modate the inclusion of fire stations as well as non-profit hospitals, which may or may not
behave as firms. We chose these three classes of facilities because we suspect that the mech-
anisms generating their allocations span the spectrum from regulated market competition
(supermarkets) to central planning (fire stations), with hospitals somewhere in between.13

By comparing ξ(sact), ξ applied to actual allocations, across these classes of facilities, we can
get a rough empirical comparison of spatial allocations resulting from competitive forces with
others resulting from central planning. That is, we look to identify the spatial inefficiency
resulting from the competitive mechanism by looking at a difference in differences—our ev-
idence is not that d̄(sact) is greater than d̄(s∗) for supermarkets, though this is true and
the difference is large, but rather that the percentage difference ξ(sact) is much larger for
supermarkets than for hospitals and fire stations.

Analysis with (1)-(3) in this context requires strong assumptions. First, we are viewing
our consumers as static components of the environment, and identical but for location.
Consumers, in their choices of residence, are perhaps as mobile as the firms.14 Second, we
are assuming that the firms are identical and can serve arbitrarily many customers, akin to
Bertrand (1883). Third, we are treating the consumer as uniquely located, i.e. ignoring the
possibility that a customer could frequent a distant supermarket with little inconvenience due
to it being located on a commute.15 In using Euclidean distances, we ignore transportation
networks.16 We also ignore important empirical infeasibilities, both physical and regulatory.
These include infeasibilities of traveling in a straight line between pairs of locations as well
as infeasibilities in facility placement due to lakes, zoning, etc.

We make these strong assumptions because they allow us to compute the optimal spatial
allocations that we need to evaluate ξ(sact). With all of these assumptions, even if an
empirically observed spatial allocation were actually optimal for our measure given real-
world constraints, we would still likely calculate a non-negligible ξ(sact) for it given that
our optimal s∗I is computed without these real-world constraints. However, to argue that
the spatial allocations of supermarkets are inefficient, we show not just that their ξ(sact)
are large, but more importantly that they are much larger than those for allocations of
hospitals and fire stations. Unless the assumptions are substantially more problematic for
supermarkets than they are for hospitals and fire stations, differences in ξ(sact) may still be

13While this vague conjecture is as deep as we go into the mechanisms generating the allocations in this
section, a goal of the broader research agenda is to design or improve mechanisms to yield spatially efficient
outcomes.

14While people may move frequently, housing stocks, and therefore population distributions, change slowly.
15For an interesting analysis that models commuting paths directly, see Houde (2012).
16Alternatively, one could perform this analysis as a version of Problem 1 by aggregating demand and

modeling the transportation network. In practice, a big challenge here is computing a distance matrix for
the network. Google Maps, among others, has an API for computing these, but it limits the size to 25x25
(up to 316x316 daily for paid users). This is only sufficient for small or highly aggregated regions. Allen
et al. (2015) takes another approach in computing the distance matrix manually by generating a heat map
of the transportation network and running shortest path algorithms between origin and destination pairs on
that heat map.
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attributable to the difference in mechanisms generating the allocations.

3.3 Data

Our data on supermarket locations comes from OSM.17 OSM’s definition of a supermarket
is a large store for groceries and other goods. It includes only full-service grocery stores,
meaning most specialty and ethnic grocers are not included. Data for hospitals comes from
two sources. Our primary source is the Hospital General Information dataset in Medicare’s
Hospital Compare data (Medicare, 2017). From this, we select all acute care and critical
access hospitals that have emergency services. Because the geocoding in that database
is incomplete, we cross-reference each hospital with its entry in the Hospitals database of
the Department of Homeland Security’s Homeland Infrastructure Foundation-Level Data
(HIFLD) to get its location. Our fire station data also comes from HIFLD.18

We conduct our analyses on three cities: Atlanta, Chicago, and Los Angeles. We selected
these cities both for certain desirable characteristics as well as technical reasons. For char-
acteristics, we wanted cities of different sizes and in different regions to argue the external
validity of our results. As for technical reasons, we wanted cities with statistical areas that
were surrounded by areas of low population density—this allows us to analyze allocations
on the city’s statistical area and ignore users of the facilities outside of that area without
introducing much error. Additionally, neighborhood search may struggle on cities that have
sizable interior areas with zero customers, so we avoided cities with significant interior areas
of water.19 For each city, we conduct our analyses on both that city’s metropolitan statistical
area (MSA) and on a much smaller area roughly corresponding to the city lines.20

Finally, we take our population data from two sources. We account for population and
population density at the level of census tracts with TIGER data from the 2010 US Census
(U.S. Census Bureau, 2016). We then augment that with updated 2015 population estimates
from Esri et al. (2017). TIGER data includes coordinates for each vertex of each census tract.
We cannot use latitude and longitude coordinates directly for Euclidean distances because
the distance of moving a degree North/South does not equate with that of moving a degree
East/West. Instead, for each area, we convert the census tract vertices and facility locations
to a metric stereographic projection centered in that area so that Euclidean distances between
the points can be interpreted as distances in meters with only minimal error resulting from

17See OpenStreetMap contributors (2017).
18See Oak Ridge National Laboratory (2017) for HIFLD hospital data and TechniGraphics, Inc. (2010)

for HIFLD fire station data.
19Having water form a boundary, as is the case with Chicago and Los Angeles, is not an issue. Small

rivers and lakes are also fine. But cities like Boston, New York, and San Francisco would yield additional
challenges.

20The boundaries of American cities are complicated—many cities contain non-city enclaves and include
disconnected exclaves. We take convexifications of the actual cities. Chicago City includes all census tracts
that intersect city boundaries with the exclusion of those around O’Hare airport (a city exclave) and with
the inclusion of tracts in Norridge (a non-city enclave). Atlanta City includes all tracts in Fulton and DeKalb
counties that intersect city boundaries, except one (FIPS: 13089020802) that juts out and includes a non-
city exclave. Los Angeles City includes all tracts that intersect city boundaries, adding in several non-city
enclaves (e.g. Beverly Hills and Santa Monica), and truncating the corridor leading down to the Port of Los
Angeles by excluding all tracts south of Interstate 105.
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the earth’s curvature.21

3.4 Implementation of neighborhood search heuristic

One of the particularities of this application is that we have a demand function f that is
uniform within each census tract and then discontinuous across census tract boundaries. For
each neighborhood adjustment, we need to find all of the census tracts that intersect with
the facility’s Voronoi cell. Because census tracts are often quite complicated polygons with
hundreds of vertices, computing the intersections between a Voronoi cell and each of the
more than two thousand census tracts (in Chicago MSA, for example) is one of the more
computationally taxing components of the procedure.22 Since most of those intersections
are empty, one could save significant time by searching for intersections for only a subset
of the census tracts. We found it sufficient to filter the full list of census tracts by first
looking for intersections between bounding boxes of the tracts and bounding boxes of the
Voronoi cells—this is much faster. For tracts for which these bounding-box intersections are
non-empty, we compute the actual intersections.

Figure 4 shows the Voronoi cell of a supermarket in the Chicago MSA. The figure’s interior
lines represent boundaries of census tracts—the cell intersects roughly 30 tracts. The census
tracts are shaded red with darker reds representing higher population densities. The black
region to the right of the figure is Lake Michigan. The black triangle is the current location
of the supermarket. To calculate the geometric median, the black circle, we draw points
randomly from each tract-cell intersection, with the number drawn from each determined
by the area of the tract-cell intersection multiplied by the population density of the tract,
all divided by the sum of these products across all tract-cell intersections. This gives us a
percentage of our sample size to draw from each tract-cell intersection. We then construct
the sample of discrete points and find the geometric median of the sample.

Figure 4: Voronoi cell of Super Fresh Market in Waukegan, IL

The multiplicity of local optima is a significant issue in this environment—when we run
the heuristic here from different initializations, we converge to many different fixed points.

21With our projection on Chicago, for instance, the calculated distance between two points 200 kilometers
apart will have an error of about 76 meters.

22Region intersection functionality is built in to Mathematica but can be slow for complicated polygons.
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The reason for this lies in the non-uniformity of the customer distribution and the fact that
our algorithm involves only local adjustments. The algorithm essentially pulls each facility
towards its nearest population mass, as if the model were gravitational, and then optimizes
the allocation of facilities over each population mass. What it does not do as well is distribute
facilities efficiently across the population masses. As an example, in the Chicago MSA, there
may be one fixed point with 4 facilities serving Aurora and 2 serving Joliet, another with
the numbers reversed, and another with 3 serving each. Because the population density is
low between the two suburbs, facilities are not necessarily pulled across from one suburb to
another even if it would be optimal to do so.

Our approach to dealing with fixed point multiplicity is to run the algorithm from fifty
randomly generated initial allocations as well as the actual one for each optimization, se-
lecting the best. For about half of our optimizations, the actual allocation proved a better
initialization than any of the fifty randomly generated initializations. This is not surprising—
we show below, in Figure 5, that actual facility allocations match population densities fairly
well. Insofar as they have the right number of facilities in each community, the actual al-
locations serve as good initializations for the algorithm. We could also have taken other
approaches, as we describe in Section 2.2.

While the heuristic does not technically require evaluation of the objective function, we
need to be able to evaluate it for two purposes. First, it is an obvious metric over which to
define a tolerance and determine convergence of the heuristic—we proposed an alternative,
the distances of the adjustments, in Section 2. Second, we need to evaluate average distance
for both the actual and the optimal allocations to measure ξ(sact). To this end, we compute
the average distance over the entire city or MSA by computing the average distance within
each census tract through numerical integration and then taking a weighted average across
the census tracts based on their populations. Importantly, the approximation of a region
by drawing points randomly that we describe above and use in our implementation of the
algorithm is not relevant to the final evaluation of average distances for both the observed
and optimal allocations. So while it is true that the allocation we call optimal is only
approximately so, the precision of our evaluations of the average distances is only limited by
the minor potential imprecision of numerical integration.

3.5 Results

In Table 1, we present summary data on the city and MSA of each of our three cities.
We include their areas in square miles, their populations, and the number of supermarkets,
hospitals, and fire stations contained in each.

Table 2 shows the average mileages to facilities for each facility, each region, and each
of three allocations. d̄(sran) is the average mileage across a thousand randomly generated
allocations with facility numbers equal to those in the corresponding actual/observed allo-
cations. We then show the average distances in the actual allocations, d̄(sact), and those in
the optimal allocations, d̄(s∗), which were generated by our algorithm. In Table 3, we report
the implied spatial inefficiencies for each facility in each city.

For hospitals and fire stations, the actual allocations are better than the average of the
randomly generated allocations for all six regions. For supermarkets, the actual allocations
are worse than the randomly generated allocations for the cities but better for the MSA’s,
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Table 1: Summary statistics on regions and facilities therein

Region Sqmi Pop. (mil.) Tracts S H F

(1) Atlanta City (AC) 163 0.47 130 19 4 38
(2) Atlanta MSA (AM) 8835 5.53 951 174 37 502
(3) Chicago City (CC) 227 2.78 803 76 25 96
(4) Chicago MSA (CM) 6304 9.56 2210 259 80 759
(5) LA City (LC) 536 4.44 1109 100 29 137
(6) LA MSA (LM) 4754 13.14 2923 277 86 535

Table 2: Average mileages to facilities for random, actual, and optimal allocations

Supermarkets Hospitals Fire Stations

Region d̄(sran) d̄(sact) d̄(s∗) d̄(sran) d̄(sact) d̄(s∗) d̄(sran) d̄(sact) d̄(s∗)

(1) AC 1.58 1.90 1.01 3.58 3.47 2.24 1.10 0.86 0.71
(2) AM 3.58 3.59 2.01 7.83 5.13 4.24 2.11 1.47 1.18
(3) CC 0.93 1.09 0.60 1.67 1.49 1.06 0.82 0.61 0.54
(4) CM 2.74 2.40 1.39 5.01 3.06 2.34 1.58 0.90 0.75
(5) LC 1.20 1.43 0.73 2.33 2.06 1.36 1.02 0.75 0.63
(6) LM 2.12 1.77 1.00 3.83 2.30 1.77 1.52 0.82 0.68

Table 3: Spatial inefficiency of actual facility allocations

ξ(sact)%
Region S H F

(1) Atlanta City 87 55 22
(2) Atlanta MSA 79 21 25
(3) Chicago City 82 41 14
(4) Chicago MSA 73 30 21
(5) LA City 96 51 19
(6) LA MSA 78 30 20
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with the exception of Atlanta MSA, for which the two are very close. This is a first indication
of our general point that supermarkets are inefficiently allocated, at least for the purposes
of consumer transportation costs.

The inefficiency of the supermarket allocations is yet more stark in Table 3. In each of the
six regions, the spatial inefficiency associated with the supermarket allocations is significantly
greater than that of hospital and fire station allocations.23 They still represent average
distances between 56% and 96% longer than the optimal configurations. The difference
between being 1.09 miles and 0.6 miles from a supermarket in the city of Chicago, for
instance, is fairly significant for consumers without a car.24

One might question whether our measure of inefficiency would correlate with the num-
ber of facilities, and thus a comparison between two allocations of different I would not be
meaningful. In this case, however, there are more supermarkets in each region than there
are hospitals and less supermarkets than fire stations, and both hospital and fire station
allocations are more efficient. Another contention would be that our assumption that super-
markets can serve arbitrarily many customers is influencing the results. But this is also true
of hospitals and fire stations,25 for which we find less inefficiency.

We include figures to directly compare the actual allocation of supermarkets with the
optimal allocation. Figures 5a and 5b show the population densities of census tracts in
Chicago MSA as well as the actual spatial allocation of supermarkets. The latter shows that
supermarkets do tend to locate in high-density areas, which is efficient, but they also tend
to cluster, which is not efficient by our measure. Figures 6c and 6d show distances of all
points in Chicago MSA for the actual and optimal allocations respectively. It is immediately
apparent that most of the MSA is much closer to their nearest supermarket with the optimal
allocation. Of course, what matters is not how close points in the region are to their nearest
supermarket, but rather how close people are. Therefore, we also provide scarcity plots that
reveal where there is significant population that is distant from a supermarket. To this end,
in Figures 5e and 5f we map over the region a density plot in which the shade of coloring at
a point is determined by the product of the population density of the containing tract and
the distance from that point to its nearest supermarket.26

Figures 6c-5f also show that a consequential difference between the actual and optimal
allocations is that a significant number of supermarkets have been pushed out from the
city center to Chicago’s suburbs and exurbs in the optimal allocation. This is, indeed,
optimal in terms of minimizing average distances.27 Figure 5a is a little misleading in its
portrayal of population density as it seems to suggest that there is very little population

23The inefficiency in the supermarket allocations appears to come from their tendency to cluster near areas
of higher population density. In this sense, they are at least clustered where the people are.

24While we are using supermarkets as an example to illustrate a broader point about spatial allocations
resulting from competition, our analysis overlaps here with literature on food deserts and access. Distances
affect food choice, not just transportation costs. For a review of this literature, see Walker et al. (2010).
Also see ERS-USDA (2017) for a related spatial atlas.

25Fire stations’ duties may scale more with area than population.
26We subtract one mile from the distance in the figure coloring as otherwise high-density areas suggest

scarcity even quite close to a supermarket.
27Allen et al. (2015) comes to a similar conclusion through a very different analysis—they find that the

welfare of Chicago residents would increase if more area was allocated to residential usage in the central
business district and more area was allocated to businesses in the outlying neighborhoods.
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(a) Census tracts and pop. density (b) Supermarkets and pop. density

Figure 5: Chicago MSA

at the periphery of the MSA. But the almost-white census tracts on the periphery actually
have roughly the same population as census tracts closer into the city—census tracts are
defined to have similar populations. There are even some significant towns of concentrated
population density in some of these peripheral census tracts. But the population densities
for these tracts, which determines the shading, is still almost negligible because of their
size. In any case, it should come as little surprise that the optimal allocation attempts to
serve these communities.28 The fact that the actual allocation does not hints at the sort of
principle of minimum differentiation clustering that was posited in Hotelling (1929).29 All
of this notwithstanding, we did the analyses on the city boundaries also to show that not
all of our efficiency gains in the optimal allocations come from movements of facilities from
the inner city to suburbs and exurbs.30 Figures for other facilities in Chicago MSA and for
supermarkets in Chicago city are provided in Appendix A.

We can also estimate the cost of the spatial inefficiency in supermarket allocations in
monetary terms. Our optimal allocation reduces the average distance to nearest supermarket
from 2.4 miles to 1.4 miles. Since we have no evidence as to the feasibility of the optimal
allocation, let us compare the actual with an allocation of supermarkets that has the same

28We do not consider different rates of car ownership between urban and sub/exurban tracts—if our goal
was to generate truly optimal allocations, considering this would be necessary.

29Remember that our optimal allocation is for the I from the actual allocation. We do not suggest that
this I is optimal, nor that policymakers should seek to implement s∗. Our focus is the inefficiency of sact.

30Additional gains come largely from declustering.
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(c) Distance to supermarket in sact (d) Distance to supermarket in sopt

(e) Supermarket scarcity in sact (f) Supermarket scarcity in sopt

Figure 5: Chicago MSA (continued)
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spatial inefficiency of 30% as Chicago hospitals, the less efficient of the other two facility
allocations. Matching that 30% inefficiency means bringing the distance from 2.4 miles
down to about 1.8 miles. For a single round-trip, this represents an average savings of 1.2
miles. If we multiply this by the roughly 3.4 million households in the Chicago MSA and
suppose that a member of each household visits a supermarket weekly, we get a reduction of
about 214 million miles traveled annually. If we multiply this by the IRS standard mileage
rates used to calculate the deductible costs of operating an automobile for business, 53.5
cents per mile, we would value these miles at about 114 million dollars.31 This estimate
includes only direct transportation costs, not time costs. Even for the transportation costs,
we think it is highly conservative—reducing the Euclidean distance to supermarkets by 0.6
miles usually reduces the travel distance by more than 0.6 miles, and we suspect per-mile
travel costs to be greater that 53.5 cents per mile for those without cars.32

Further research is required to determine the degree to which inefficiencies we find for
supermarket allocations can be generalized to other allocations resulting from competition.
We also do not isolate the degree to which current regulation may either limit or exacerbate
these inefficiencies. But we believe that the tendency of similar firms to cluster is fairly
general. In retail and dining with limited consumer information, this may be efficient—
consumers enjoy shopping at multiple retail stores at one location and diners can choose a
location and then compare dining options. But when firms are homogeneous, as we suggest
is largely the case for supermarkets in our data set, we view clustering as an inefficient
phenomenon.

Insofar as the clustering of homogeneous firms is inefficient, we are interested in policies
that could limit clustering. Our empirical analysis has no direct policy conclusions. We do
not propose optimizing the spatial allocations of supermarkets or gas stations because this
could yield additional deadweight loss from price competition—we suspect that the clustering
of homogeneous firms has advantageous effects on prices. Our optimized allocations also take
the number of firms as given, and we have not considered the different sizes of our facilities
and the value of land.33 To consider policy, we would need a predictive model of spatial
competition. Auerbach and Dix (2018) discusses this challenge.

4 Conclusion

In this paper, we have proposed a neighborhood search heuristic for the p-median problem
with continuous demand. We have discussed issues relating to its implementation and the
embedding of neighborhood search within a hybrid heuristic. We then applied the heuristic to
facility location problems in US cities to find that actual spatial allocations of supermarkets
in cities do relatively poorly in minimizing transportation costs for consumers.

31Analogous calculations for Atlanta MSA and Los Angeles MSA yield 127 million dollars and 114 million
dollars, respectively.

32We grant that some households get groceries from vendors other than full-service supermarkets. While
this may reduce their transportation costs, it has other costs in terms of food choice and public health.

33Our optimized allocation has supermarkets further from the city center, on average, than the actual
allocation, which likely means that the optimized allocation would occupy less valuable land than the actual.
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A Additional figures from Section 3.5

In this appendix, we provide a few extra figures for comparison with those presented in
the body of the paper. First, we continue Figure 5 to show allocations of hospitals and fire
stations in Chicago MSA. Then, in Figure 6, we show the supermarket allocations in Chicago
city as an additional comparison to those in Chicago MSA. Figures for other regions and
features are available upon request.

(g) Hospitals and pop. density

Figure 5: Chicago MSA (continued)
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(h) Distance to hospital in sact (i) Distance to hospital in sopt

(j) Hospital scarcity in sact (k) Hospital scarcity in sopt

Figure 5: Chicago MSA (continued)
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(l) Fire stations and pop. density

Figure 5: Chicago MSA (continued)

26



(m) Distance to fire station in sact (n) Distance to fire station in sopt

(o) Fire station scarcity in sact (p) Fire station scarcity in sopt

Figure 5: Chicago MSA (continued)
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(a) Census tracts and pop. density

(b) Supermarkets and pop. density

Figure 6: Chicago city
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(c) Distance to supermarket in sact (d) Distance to supermarket in sopt

(e) Supermarket scarcity in sact (f) Supermarket scarcity in sopt

Figure 6: Chicago city (continued)
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