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The standard p-median problem (Hakimi, 1964)

Essentially a weighted (Fermat-)Weber problem.

Inputs and decision variable:

N = a set of nodes in a network
wm = demand at node m ∈ N

d(m, n) = distance between node m ∈ N and node n ∈ N
p = number of facilities to locate

s = (s1, s2, . . . , sp) = choice of p nodes at which facilities are to be located

Problem:
Minimize

s
z =

∑
m∈N

wm ·min
k

d(m, sk)



The p-median problem with continuous demand

Inputs and decision variable:

X ⊆ R2 is a subset of Euclidean space
f : X → R≥0 is an integrable consumer density function

d(m, n) = distance between m, n ∈ X
p = number of facilities to locate

s = (s1, s2, . . . , sp) = choice of p locations for facilities (each sk ∈ X )

Problem:
Minimize

s
z =

∫
X

f (x) ·min
k

d(x , sk) dx



Why continuous demand?

Two settings with continuous demand:
Uncertainty: Ride-sharing service wants to place its idle drivers so
as to minimize wait-times for passengers.

See Auerbach and Dix (2018).

Spatially aggregated data: Census data tells us which tract
respondents are in, but not precise location.

We work with a census application in this paper.

Why not discretize?
Introduces error that is hard to quantify. See Francis et al. (2009).

Tradeoff between computability and accuracy.

With exogenous spatial discretization, sparsity issues.



Neighborhood search on a network (Maranzana, 1963)



Neighborhood search on the plane



Heuristic

Theorem: Procedure 1 converges to an approximate local minimum of
the p-median problem with continuous demand.



Each adjustment improves the objective (proof sketch)

Similar logic Lloyd’s algorithm (Lloyd, 1982)!



Challenges and solutions

Finding the geometric median of a weighted polygon is hard.

Draw points randomly from the polygon based on f and find the
geometric median of the set of points.

The set of local minima can be large and diverse.
Start from a variety of initializations and take best local minimum.

Use a greedy algorithm to generate a good initialization.

Include local search in hybrid heuristic with global adjustment.

Heuristic can be computationally demanding.

Compute adjustments for all features before recomputing the
Voronoi cells, making the heuristic embarrassingly parallelizable.



Application: Measuring spatial inefficiency

Spatial inefficiency in consumer travel times

Suppose spatial inefficiency is proportional to the average Euclidean
distance between a customer and her nearest firm/feature.

d̄(s) and d̄(s∗) are the average distances under the observed and
optimized allocations, respectively.

ξ(s) = (d̄(s)− d̄(s∗))/d̄(s∗), i.e. a % difference in averages.

We evaluate ξ for supermarkets, hospital, and fire stations.

The Voronoi cell of Super Fresh Market in Waukegan, IL



Supermarkets, fire stations, and hospitals in cities

To work in 2D and account for customer density directly, we look at
allocations of firms/features in cities.

Summary statistics on regions and features therein

Region Sqmi Pop. (M) Tracts S H F

(1) Atlanta City (AC) 163 0.47 130 19 4 38
(2) Atlanta MSA (AM) 8835 5.53 951 174 37 502
(3) Chicago City (CC) 227 2.78 803 76 25 96
(4) Chicago MSA (CM) 6304 9.56 2210 259 80 759
(5) LA City (LC) 536 4.44 1109 100 29 137
(6) LA MSA (LM) 4754 13.14 2923 277 86 535

S, H, and F are numbers of supermarkets, hospitals and fire stations,
respectively.



Results

Supermarkets Hospitals Fire Stations
Region d̄(sact) d̄(s∗) d̄(sact) d̄(s∗) d̄(sact) d̄(s∗)

(1) AC 1.90 1.01 3.47 2.24 0.86 0.71
(2) AM 3.59 2.01 5.13 4.24 1.47 1.18
(3) CC 1.09 0.60 1.49 1.06 0.61 0.54
(4) CM 2.40 1.39 3.06 2.34 0.90 0.75
(5) LC 1.43 0.73 2.06 1.36 0.75 0.63
(6) LM 1.77 1.00 2.30 1.77 0.82 0.68

ξ(sact)
Region S H F

(1) Atlanta City 87 55 22
(2) Atlanta MSA 79 21 25
(3) Chicago City 82 41 14
(4) Chicago MSA 73 30 21
(5) LA City 96 51 19
(6) LA MSA 78 30 20

Spatial inefficiency in consumer travel costs is significantly larger for
supermarket allocations, those generated by a competitive mechanism.



Visualizing supermarkets in Chicago MSA (1)

Census tracts and pop. density Supermarkets and pop. density

Supermarkets follow population density roughly, but cluster.



Visualizing supermarkets in Chicago MSA (2)

Distance to supermarket in sact Distance to supermarket in s∗

s∗ declusters supermarkets and moves them outwards.



Visualizing supermarkets in Chicago MSA (3)

Supermarket scarcity in sact Supermarket scarcity in s∗

s∗ significantly reduces spatial scarcity.



Conclusion and extensions

Conclusions:

Use local neighborhood search (in a hybrid heuristic) for the
p-median problem with continuous demand.
Does competition yield good spatial allocations?

Supermarkets don’t look great.

In our ridesharing work (Auerbach and Dix, 2018), results of
competition look more positive.

Extensions:

What about when facilities have capacities?
A dynamic model for facility repositioning.

Then may be relevant to scooter or AV allocation.
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